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Abstract

We present Twine, Facebook’s cluster management system
which has been running in production for the past decade.
Twine has helped convert our infrastructure from a collection
of siloed pools of customized machines dedicated to individ-
ual workloads, into a large-scale shared infrastructure with
fungible hardware.

Our goal of ubiquitous shared infrastructure leads us to
some decisions counter to common practices. For instance,
rather than deploying an isolated control plane per cluster,
Twine scales a single control plane to manage one million
machines across all data centers in a geographic region and
transparently move jobs across clusters.

Twine accommodates workload-specific customization in
shared infrastructure, and this approach further departs from
common practices. The TaskControl API allows an applica-
tion to collaborate with Twine to handle container lifecycle
events, e.g., restarting a ZooKeeper deployment’s followers
first and its leader last during a rolling upgrade. Host pro-

files capture hardware and OS settings that workloads can
tune to improve performance and reliability; Twine dynam-
ically allocates machines to workloads and switches host
profiles accordingly.

Finally, going against the conventional wisdom of prioritiz-
ing stacking workloads on big machines to increase utiliza-
tion, we universally deploy power-efficient small machines
outfit with a single CPU and 64GB RAM to achieve higher
performance per watt, and we leverage autoscaling to improve
machine utilization.

We describe the design of Twine and share our experience
in migrating Facebook’s workloads onto shared infrastructure.

1 Introduction

The advent of computation as a utility has led organizations
to consolidate their workloads onto shared infrastructure, a
common pool of resources to run any workload. Cluster
management systems help organizations utilize shared infras-
tructure effectively through automation, standardization, and

economies of scale. Cluster management systems have made
large progress in the past decade, from Mesos [17], Borg [39],
to Kubernetes [23]. Existing systems, however, still have
limitations in supporting large-scale shared infrastructure:

1. They usually focus on isolated clusters, with limited
support for cross-cluster management as an afterthought.
These silos may strand unused capacity in clusters.

2. They rarely consult an application about its lifecycle
management operations, making it more difficult for the
application to uphold its availability. For example, they
may unknowingly restart an application before it has
built another data replica, rendering the data unavailable.

3. They rarely allow an application to provide its preferred
custom hardware and OS settings to shared machines.
Lack of customization may negatively impact applica-
tion performance on shared infrastructure.

4. They usually prefer big machines with more CPUs and
memory in order to stack workloads and increase utiliza-
tion. If not managed well, underutilized big machines
waste power, often a constrained resource in data centers.

These limitations can lead to underdelivery of the promise of
shared infrastructure: (1) artificially caps the sharing scope to
one cluster; (2) & (3) highlight the tension between shared in-
frastructure’s preference for standardization and applications’
needs for customization; (4) calls for a shift of focus from
single-machine utilization to global optimization.

In this paper, we describe how we address the above limita-
tions in Twine, Facebook’s cluster management system. Our
two insights are 1) we scale a single Twine control plane
to manage one million machines across data centers in a
geographic region while providing high reliability and per-
formance guarantees, and 2) we support workload-specific
customization, which allows applications to run on shared
infrastructure without sacrificing performance or capabilities.

Twine packages applications into Linux containers and
manages the lifecycle of machines, containers, and applica-
tions. A task is one instance of an application deployed in a
container, and a job is a group of tasks of the same application.
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A single control plane to manage one million machines.

A region consists of multiple data centers, and a data center is
usually divided into clusters of tens of thousands of machines
connected by a high-bandwidth network. As with Borg [39]
and Kubernetes [23], an isolated control plane per cluster
results in stranded capacity and operational burden because
workloads cannot easily move across clusters. For example,
power-hungry jobs colocated in a cluster can trigger power
capping [26, 41], affecting service throughput until humans
move the problematic jobs to other clusters.

Similarly, large-scale hardware refresh in a cluster may
result in idle machines and operational overhead. Our current
hardware refresh granularity is 25% of a data center. Figure 1
shows the duration for all owners of thousands of jobs to
migrate jobs out of a cluster prior to a hardware refresh in
2016. The P50 is at 7.5 days and the P100 is at 87 days. A
large portion of the cluster sat idle in these ≈80 days while
waiting for all jobs to migrate.
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Figure 1: CDF of time to close job-migration work tickets.

To address the problems above, we scaled a single Twine
control plane to manage one million machines across all data
centers in a region. Unlike Kubernetes Federation [25], Twine
scales out natively without an additional federation layer.

Collaborative lifecycle management. Cluster manage-
ment systems generally lack visibility into how an application
manages its internal state, leading to suboptimal handling of
hardware and software lifecycle events that impact application
availability. Figure 2 provides a stateful service example.
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Figure 2: Replicas of data shards A-D are distributed across tasks 1-7. Tasks 1
and 3 should not be restarted concurrently for a software upgrade, as shard A
would lose two replicas and become unavailable. If the machine hosting task
4 were to fail or be restarted for a kernel or firmware upgrade, the cluster
management system would need to ensure that neither task 1 nor 7 is restarted
concurrently in order to keep shard C available.

Twine provides a novel TaskControl API to allow appli-
cations to collaborate with Twine in handling task lifecycle
events that impact availability. For example, an application
may postpone a task restart and rebuild a lost data replica first.

Host-level customization. Hardware and OS settings may
significantly impact application performance. For example,

our web tier achieves 11% higher throughput by tuning OS
settings. Twine leverages entitlements, our quota system, to
handle hardware and OS tuning. For example, an entitlement
for a business unit may allow it to use up to 30,000 machines.
We associate each entitlement with a host profile, a set of host
customizations that the entitlement owner can tune. Out of a
shared machine pool, Twine dynamically allocates machines
to entitlements and switches host profiles accordingly.

Power-efficient machines. Facebook’s workloads have
grown faster than our data center buildup. Power scarcity
motivated us to maximize performance per watt, either by
employing universal stacking on big machines or deploying
power-efficient small machines. We found it challenging to
stack large workloads on big machines effectively. Further,
unlike a public cloud that needs to support diverse customer
requirements, we only need to optimize for our internal work-
loads. These factors led to us to adopt small machines with a
single CPU and 64GB RAM [32].

Shared infrastructure. As we evolved Twine to support
large-scale shared infrastructure, we have been migrating our
workloads onto a single shared compute pool, twshared, and a
single shared storage pool. Twine supports both pools, but we
focus on twshared in this paper. twshared hosts thousands of
systems, including frontend, backend, ML, stream processing,
and stateful services. While twshared does not host durable
storage systems, it provides TBs of local flash to support
stateful services that store state derived from durable storage
systems. Figure 3 shows twshared’s growth.
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Figure 3: Growth of twshared. twshared was created in 2013, but adoption
was limited in its first six years. We enhanced Twine and rebooted the
adoption effort in 2018. twshared hosts 56% of our fleet as of October 2020,
in contrast to 15% in January 2019. We expect that all compute services,
≈85% of our fleet, will run on twshared by early 2022, while the remaining
15% will run in a separate shared storage pool.

twshared has become our ubiquitous compute pool, as all
new compute capacity lands only in twshared. We had broad
conversations with colleagues in industry and are unaware
of any large company that has achieved near 100% shared
infrastructure consolidation.

The rest of the paper is organized as follow. §2 presents the
design and implementation of Twine. §3 and §4 describe how
we scale Twine to manage one million machines and do so
reliably. §5 evaluates Twine. §6 shares our experience with
driving twshared adoption. §7 describes lessons learned. §8
summarizes related work. Finally, §9 concludes the paper.
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Figure 4: The Twine Ecosystem. Note a potential terminology confusion. The Twine scheduler corresponds to the Kubernetes [23] controllers, whereas the
Twine allocator corresponds to the Kubernetes scheduler.

2 Twine Design and Implementation

Facebook currently operates out of 12 geo-distributed regions,
with several more under construction. Each region consists
of multiple data center (DC) buildings. A main switchboard

(MSB) [41] is the largest fault domain in a DC with sufficient
power and network isolation to fail independently. A DC
consists of tens of MSBs each powering tens of rows that feed
tens of racks of servers as shown in Figure 5.
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Figure 5: Data center topology.

Historically, a cluster was a subunit within a DC consist-
ing of about ten thousand machines connected by a high-
bandwidth network and managed by an isolated Twine con-
trol plane. Over time, our network transitioned to a fabric
architecture [2, 14] that provides high bandwidth both within
a DC and across DCs in a region, empowering a single Twine
control plane to manage jobs across DCs.

2.1 Twine Ecosystem

Figure 4 shows an overview of Twine. The Capacity Portal

allows users to request or modify entitlements, which asso-
ciate capacity quotas with business units defined in the service

accounting hierarchy. With a granted entitlement, a user de-
ploys jobs through the front end. The scheduler manages
job and task lifecycle, e.g., orchestrating a job’s software re-
lease. If a job has a TaskController, the scheduler coordinates
with the TaskController to make decisions, e.g., delaying a
task restart to rebuild a lost data replica first. The allocator

assigns machines to entitlements and assigns tasks to ma-
chines. ReBalancer runs asynchronously and continuously to
improve the allocator’s decisions, e.g., better balancing the
utilization of CPU, power, and network. Resource Broker

(RB) stores machine information and unavailability events

that track hardware failures and planned maintenance. DC
operators schedule planned maintenance through Ops Plan-

ner. The Health Check Service (HCS) monitors machines and
updates their status in RB. The agent runs on every machine
to manage tasks. Sidekick switches host profiles as needed.
Service Resource Manager (SRM) autoscales jobs in response
to load changes. Conveyor is our continuous delivery system.

2.2 Entitlements

Conceptually, an entitlement is a pseudo cluster that uses
a set of dynamically allocated machines to host jobs. An
entitlement grants a business unit a quota expressed as a count
of machines of certain types (e.g., 2,000 Skylake machines)
or as Relative Resource Units (RRU) akin to ECU in AWS.

A machine is either free or assigned to an entitlement, and
it can be dynamically reassigned from one entitlement to an-
other. An entitlement can consist of machines from different
DCs in a region. Existing cluster management systems bind a
job to a physical cluster. In contrast, Twine binds a job to an
entitlement. Jobs in an entitlement stack with one another on
machines assigned to the entitlement.

By default, Twine spreads tasks of the same job across DCs
and MSBs as shown in Figure 6. This reduces buffer capacity
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needed for fault tolerance [29]. Suppose a job’s tasks are
spread across 12 MSBs in one DC. We need 1

12 ≈ 8.3% of
buffer capacity to guard against the failure of one MSB. If the
job’s tasks are spread across five DCs’ 60 MSBs, the needed
buffer reduces to 1

60 ≈ 1.7%. For workloads that require better
locality for compute and storage, Twine allows an entitlement
to override the default spread policy and pin its machines and
jobs to a specific DC. These workloads are in the minority.
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Figure 6: Entitlement example. Entitlement 1 consists of machines M1,
M3, and M4 from different MSBs. Jobs A and B are bound to Entitlement
1, and job C is bound to Entitlement 2. Jobs A and B stack their tasks on
machine M3. As job C grows, Twine adds machine M6 to Entitlement 2.

The allocator assigns machines to entitlements, and it also
assigns tasks to machines in an entitlement. For an entitle-
ment with a quota of N machines, the number of machines
actually assigned to the entitlement may vary between 0 and
N, depending on the actual needs of jobs running in the enti-
tlement. Figure 7 depicts an example of how an entitlement
changes over time.
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Figure 7: Allocation of machines and tasks. Initially, no machine is assigned
to the entitlement. When job D starts, the allocator assigns machine M7 to the
entitlement. When job E starts, the allocator stacks one task on M7 and adds
machine M8 to the entitlement to run E’s other task. When job E stops, the
allocator returns M8 to the free machine pool for use by other entitlements.

We optimized the allocator to make quick decisions when
starting tasks; this optimization limits computation time and
leads to best-effort outcomes. The addition or removal of ma-
chines and workload evolution may result in hotspots in CPU,
power, or network. ReBalancer runs asynchronously and
continuously to improve upon the allocator’s allocation deci-
sions by swapping machines across entitlements or moving
tasks across machines. ReBalancer uses a constraint solver to
perform these time-consuming global optimizations.

Entitlements help automate job movements across clusters.
Consider a cluster-wide hardware refresh. We first add new
machines from other clusters into the regional free machine
pool (see the right side of Figure 7). Then the allocator moves
tasks from machines undergoing hardware refresh to new
machines acquired from the free machine pool, requiring no
actions from the job owner. To migrate a task, Twine stops
the task on the old machine and restarts it on the new machine.
We do not use live container migration.

2.3 Allocator

One instance of Resource Broker (RB) is deployed to each DC.
RB records whether a machine in the DC is free or assigned to
an entitlement. A regional allocator fetches this information
from all RBs in the same region, maintains an in-memory
write-through cache, and subscribes to future changes.

The scheduler calls the allocator to perform a job allocation
when a new job starts, an existing job changes size, or a
machine fails. The allocation request contains an entitlement
ID, an allocation policy, and a per-task map of which tasks
need to be allocated or freed. The allocation policy includes
hard requirements (e.g., using Skylake machines only) and
soft preferences (e.g., spreading tasks across fault domains).

The allocator maintains an in-memory index of all ma-
chines and their properties to support hard requirement
queries, such as “all Skylake machines with available

CPU ≥ 2RRU and available memory ≥ 5GB.” It needs to
search machines beyond the ones already assigned to the en-
titlement because it may need to add more machines to the
entitlement to host the job. After applying hard requirements,
it applies soft preferences to sort the remaining machines.

A soft preference is expressed as a combination of 1) a ma-
chine property to partition machines into different bins with
the same property value, and 2) a strategy to allocate tasks to
these machine bins. For example, the allocator spreads tasks
across fault domains by using a soft preference with fault
domain as the machine property, and the strategy that assigns
tasks evenly to the machine bins that represent fault domains.

The allocator uses multiple threads to perform concurrent
allocations for different jobs, and relies on optimistic con-
currency control to resolve conflicts. Before committing an
allocation, a thread verifies that all impacted machines still
have sufficient resources left for the allocation. If the verifica-
tion fails, it retries a different allocation.

To avoid repeating the costly machine selection process,
the allocator caches the allocation results at the job level. The
allocator invalidates a cache entry if the job allocation request
changes or the properties of the machines hosting the tasks
change. The cache hit ratio is typically above 99%.

2.4 Scheduler

The scheduler manages the lifecycle of jobs and tasks. As
the central orchestrator, the scheduler drives changes across
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Twine components in response to different lifecycle events,
including hardware failures, maintenance operations, power
capping [41], kernel upgrades, job software releases, job
resizing, task canary, and ReBalancer moving tasks.

The scheduler handles a machine failure as follows. When
the Health Check Service detects a machine failure, it creates
an unavailability event in Resource Broker, which notifies
the allocator and scheduler. The scheduler disables the af-
fected tasks in the service discovery system so that clients
stop sending traffic to these tasks. A job is impacted by the
machine failure if it has tasks running on the machine. If an
impacted job has a TaskController, the scheduler informs the
TaskController of the affected tasks. After the TaskController
acknowledges that these tasks can be moved, the scheduler
requests the allocator to deallocate the tasks and allocate new
instances of the tasks on other machines. The scheduler in-
structs agents to start the new tasks accordingly. Finally, the
scheduler enables the tasks in the service discovery system
so that clients can send traffic to the newly started tasks.

The scheduler paces changes to a job’s tasks to avoid ap-
plication downtime. For example, regardless of reasons (e.g.,
hardware failure or software upgrade), if a job’s total unavail-
able tasks exceed a user-configured threshold, no more tasks
can be restarted for a software release. The scheduler has built-
in support for commonly used lifecycle policies and offers
the TaskControl API to implement more complex policies.

2.5 TaskControl

An application often knows best how to safely handle hard-
ware or software lifecycle events that affect its availability,
but it cannot inform the cluster management system how to
orchestrate these actions. Figure 2 depicts one example. An-
other example is a ZooKeeper deployment that wishes to
apply a software release to its followers first and its leader
last [8]. Otherwise, an n-member ZooKeeper ensemble in
the worst case experiences n leader failovers during a release.
We designed the TaskControl API to allow applications to
collaborate with Twine when deciding which task operations
to proceed and which to postpone, as depicted in Figure 8.

Unlike software releases, maintenance events like a power
device replacement cannot be blocked indefinitely by a
TaskController; the scheduler gives the TaskController ad-
vance notices with a deadline to react. Upon reaching the
deadline, the scheduler stops the remaining tasks on the af-
fected machines, allowing maintenance to proceed. Before
the deadline, a TaskController has multiple options: 1) move
the tasks to other machines, 2) stop the tasks on the current
machine and restart them after the maintenance completes,
or 3) do nothing and keep the tasks running. For example, a
top-of-rack switch maintenance typically incurs only a few
minutes of network downtime, and a stateful service may pre-
fer option 3 because rebuilding a data replica elsewhere takes
longer than the maintenance itself.

service TaskController {

TaskControlResponse process(TaskControlRequest request);

}

struct TaskControlRequest {

string jobHandle;

list<> request; // Pending task operations to be approved.

list<> completed; // Completed task operations.

list<> advanceNotices; // Upcoming planned maintenance.

list<> allUnhealthyTasks; // Tasks unhealthy due to any reason.

int sequenceNumber; // Increase after each call.

}

struct TaskControlResponse {

list<> ack; // Approved task operations.

}

(a) TaskControl API.

Scheduler

Time

TaskController

S0

S1
request=[t0,	t1]		completed=[		]

ack=[t1]

S2
request=[t0]						completed=[t1]

ack=[t0]

S3
request=[		]						completed=[t0]

ack=[		]

Update Job

(b) Calling sequence of the TaskControl API when handling a job update. The job has
two tasks: t0 and t1. At time S0, the user initiates a job update. At time S1, the sched-
uler requests the approval of updates on tasks t0 and t1, with request=[t0,t1]. The
application’s TaskController can selectively approve updates for any subset of tasks
in any order. It approves the update on task t1 by replying ack=[t1], but delays the
update on task t0 to keep one task available. At time S2, the scheduler completes the
update on task t1 with completed=[t1], and requests an update on the remaining task
t0. This time, the TaskController approves the request.

Figure 8: TaskControl API and an example of the calling sequence.

2.6 Host Profiles

Our fleet runs thousands of different services, and Figure 9
shows that the 50 largest services consume ≈70% of all ca-
pacity. Similar capacity skew exists in Borg as well [36].
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Figure 9: CDF of machines used by services. A small number of services
dominate the capacity consumption. Note that the x-axis is in log scale.

Our efficiency effort focuses on these large services, and we
find that host-level customization is important for maximizing
their performance. For example, customizations help our
large web tier achieve 11% higher throughput. However,
some custom settings may be beneficial for one service but
detrimental to another. As an example, a combination of
explicit 2MB and 1GB hugepages improves the web tier’s
throughput by 4%; however, most services are incapable of
utilizing explicit hugepages and enabling this setting globally
would lead to unusable memory.
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We resolved the conflict between host-level customization
and sharing machines in a common pool via host profiles,
a framework to control host-level customizations on entitle-
ments. An entitlement is associated with one host profile;
all machines in the entitlement share the same host profile.
When a machine is reassigned from one entitlement to an-
other, Sidekick automatically applies the target entitlement’s
host profile. By fully automating the process of machine al-
location and host customization in our shared infrastructure,
we can perform fleet-wide optimizations (e.g., swapping ma-
chines across entitlements to eliminate hotspots in network
or power) without sacrificing workload performance. Sup-
ported host profile settings include kernel versions, sysctls
(e.g., hugepages and kernel scheduler settings), cgroupv2
(e.g., CPU controller), storage (e.g., XFS or brtfs), NIC set-
tings, CPU Turbo Boost, and hardware prefetch.

2.7 Application-Level Schedulers

As shown at the top of Figure 4, multiple application-level
schedulers are built atop Twine to better support vertical work-
loads such as stateful [16], batch [21], machine learning [13],
stream processing [28], and video processing [18]. Twine
provides containers as resources for these application-level
schedulers to manage and delegates task lifecycle manage-
ment to them through TaskControl.

Shard Manager (SM) [16] is an example of an application-
level scheduler. It is widely used at Facebook to build sharded
services like the one in Figure 2. It has two major components:
the SM client library and the SM scheduler. The library
is linked into a sharded service and provides two APIs for
the service to implement: add_shard() and drop_shard().
The SM scheduler decides the shards each Twine task will
host and calls the service’s add_shard() implementation to
prepare the task to serve requests for those shards. To balance
load, SM may migrate a shard from task T1 to task T2 by
informing T1 to drop_shard() and T2 to add_shard().

The SM scheduler integrates with Twine through TaskCon-
trol and can handle the complex situations depicted in Fig-
ure 2. In another example, Twine gives SM advance notice
about an upcoming maintenance on a machine. If the mainte-
nance duration is short and the shards hosted by the machine
have replicas elsewhere, SM may do nothing; otherwise, SM
may migrate the impacted shards out of the machine.

2.8 Small Machines and Autoscaling

To achieve higher performance per watt, our server fleet uses
millions of small machines [32], each with one 18-core CPU
and 64GB RAM. We have worked with Intel to define low-
power processors optimized for our environment, e.g., re-
moving unneeded NUMA components. Four small machines
are tightly packed into one sled, sharing one multi-host NIC.
They are replacing our big machines, each with dual CPUs,

256GB RAM, and a dedicated NIC. Under the same rack-
level power budget, a rack holds either 92 small machines or
30 big machines. A small-machine rack delivers 57% higher
total compute capacity measured in RRU. Averaged across
all our services, using small machines led to 18% savings in
power and 17% savings in total cost of ownership (§5.4).

We are consolidating all our compute services onto small
machines, as opposed to offering a variety of high-memory or
high-CPU machine types. This unification simplifies down-
stream supply chain and fleet management. It also improves
machine fungibility across services, as we can easily reuse a
machine across all compute services. Our consolidation jour-
ney has been challenging (§7.4), as some services initially did
not fit the limited 64GB in our small machines. To address
this, we used several common software architectural changes:

• Shard a service so that each instance consumes less mem-
ory. Our Shard Manager platform (§2.7) helps develop-
ers easily build sharded services running on Twine.

• Exploit data locality to move in-memory data to an ex-
ternal database and use the smaller memory as a cache.

• Exploit data locality to provide tiered memory on top of
64GB RAM and TBs of local flash. For example, when
migrating TAO [7], our social graph cache, from big
machines to small machines, CacheLib [5] transparently
provided tiered memory to improve cache hit ratio and
reduce load on the external database by ≈30%.

Our largest services fully utilize small machines without
stacking. We rely on Autoscaling to free up underutilized
machines. Active Last Minute (ALM) is the number of people
who use our online products within a one-minute interval.
The load of many services correlates with ALM. Service

Resource Manager (SRM) uses historical data and realtime
measurements to continuously adjust task count for ALM-
tracking services and frees up underutilized machines in their
entirety for other workloads to use. This work has allowed us
to successfully build a large-scale shared infrastructure that
consists primarily of small machines.

3 Scaling to One Million Machines

We designed Twine to manage all machines that can fit in a
region’s 150MW power budget. Although none of our regions
host one million machines yet, we are close and anticipate
reaching that scale in the near future. Two principles help
Twine scale to one million machines and beyond: 1) sharding
as opposed to federation, and 2) separation of concerns.

3.1 Scale Out via Sharding

To scale out, we shard Twine schedulers by entitlements, as
depicted in Figure 10. We assign newly-created entitlements
to shards with the least load. Entitlements can change size
and can migrate across shards. If a shard becomes overloaded,
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Twine can transparently move an entitlement in the shard
to another shard without restarting tasks in the entitlement.
Twine can also migrate an individual job from one entitlement
to another. To do this, Twine performs a rolling update of the
job until all tasks restart on machines belonging to the new
entitlement. We automate the execution of these migrations,
but humans still decide when and what to migrate. Since
migrations happen rarely, we do not automate these further.

Front End

Resource 

Broker, DC1

Scheduler Shard 1

Resource 

Broker, DC2

Resource 

Broker, DC3

Resource 

Broker, DC4

E1 E2 E3

Scheduler Shard 2

E4 E5

Scheduler Shard 3

E6 E7 E8

Allocator

Shared Regional Free Machine Pool

Figure 10: Sharding a scheduler by entitlements. Each scheduler shard man-
ages a different subset of entitlements for the region. Scheduler Shard 1

manages entitlements E1, E2, and E3. The front end maintains an entitlement-
to-shard map and forwards requests to the responsible shards. Each data
center has a Resource Broker (RB) managing the machines in that data
center. Conceptually, all RBs in a region jointly maintain a free machine
pool shared by all entitlements in the region. We also shard the allocator
by entitlements and there is a 1:1 mapping between a scheduler shard and
an allocator shard. We do not show allocator sharding in the figure as it
currently manages a small fraction of our fleet and is still in the process of
broader production deployment.

With sharding, the scheduler can easily scale to one million
machines. Each data point in Figure 11 plots the P99 CPU
utilization of a scheduler shard. The largest shard manages
≈170K machines, using up to 40 cores and 80GB memory.
We are moving towards smaller shards to reduce the impact of
a shard failure. Assuming each shard manages 50K machines
in the future, a single Twine deployment can manage 1M
machines with 20 shards. We believe Twine can easily scale
beyond 1M machines by adding more shards.
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Figure 11: P99 CPU usage of production scheduler shards over one week.

The simplicity of scheduler sharding comes with a theoreti-
cal limitation: a single job must fit in a single scheduler shard.
This is not a practical limitation. Currently, the largest sched-
uler shard manages ≈170K machines; the largest entitlement
uses ≈60K machines; and the largest job has ≈15K tasks.
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Figure 12: P99 CPU usage of production allocators over one week.

Each data point in Figure 12 plots the P99 CPU utiliza-
tion of a production allocator. At its peak, a large allocator
performs ≈1,000 job allocations per second, with an aver-
age job size of 36 tasks. We run a few deployments of the
scheduler and allocator at the global level to manage machines
and jobs across multiple regions (§7.3). Our largest global
allocator currently manages more than one million machines
across regions. The allocator is scalable because it has a high
cache hit ratio (§2.3), does not handle allocations for short-
lived batch jobs (§3.2), and does not perform time-consuming
optimizations (§3.2).

3.2 Scale Out via Separation of Concerns

We avoid Kubernetes’ centralized architecture where all com-
ponents interact through one central API server and share one
persistent store. These centralized components become bottle-
necks and limit Kubernetes’ scalability to 5K machines. We
shard all Twine components and scale them out independently.
Sharded components include the front end, scheduler, allo-
cator, Resource Broker, Health Check Service, and Sidekick.
Further, each stateful Twine component (front end, scheduler,
allocator, and RB) has its own separate persistent store for
metadata. Like Kubernetes [23] and unlike Borg [39], we
use external persistent stores for components, as opposed to
building the stores directly into components. This allows us to
independently shard and scale out persistent stores as needed.

Separation of allocation and optimization responsibilities
helps the allocator scale. The allocator makes quick decisions
when starting tasks, whereas ReBalancer asynchronously runs
a constraint solver to perform time-consuming global opti-
mizations such as balancing CPU, network, and power.

Separation of responsibilities between Twine and
application-level schedulers helps Twine scale further.
Application-level schedulers handle many fine-grained re-
source allocation and lifecycle operations without involving
Twine. For example, the Twine scheduler and allocator do not
directly manage batch jobs, whose lifetime might last just a
few seconds and cause high scheduling loads. The application-
level batch scheduler acquires resources from Twine in the
form of Twine tasks. It reuses these tasks over a long pe-
riod of time to host different batch jobs, avoiding frequent
host profile changes. The batch scheduler can create nested
containers inside the tasks, similar to that in Mesos [17].
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3.3 Comparison of Sharding and Federation

We acknowledge that Twine’s scale of managing millions of
machines is not unique, as Borg [39] and several public clouds
likely manage infrastructure of that scale as well; however, we
believe that Twine’s approach is unique. Other cluster man-
agement systems scale out by deploying one isolated control
plane per cluster and operate many siloed clusters. They pre-
allocate machines to a cluster; once a job starts in a cluster, it
stays with the cluster. This lack of mobility results in stranded
capacity when some clusters are overloaded while others are
idle. It also causes operational burden during cluster-wide
maintenance such as hardware refresh, as shown in Figure 1.

To avoid stranded capacity, we can introduce mobility by
moving either jobs or machines. To that end, the federation
approach (e.g., Kubernetes Federation [25]) allows a job to
be split across multiple static clusters, whereas Twine dynam-
ically moves machines in and out of entitlements. Figure 13
compares these two approaches.
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(a) Federation approach. This approach uses a Cluster Manager per cluster and intro-
duces an additional Federation Manager layer. Each cluster has a set of statically con-
figured machines. As job B in Cluster 1 keeps growing, it overflows into Cluster 2.
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(b) Twine’s sharding approach. As job B grows, Twine adds more machines to
Entitlement 1, and job B stays with the same entitlement and scheduler shard.

Figure 13: The two figures above contrast how federation and sharding sup-
port a job growing over time without stranding capacity in isolated clusters.

The federation approach can support complex multi-region,
hybrid-cloud, or multi-cloud deployments, but it adds com-
plexity as a scale-out solution. In order to provide a seamless
user experience, the Federation Manager in Figure 13a has to
perform complex coordination for a job whose metadata and
management operations are split among multiple distributed
Cluster Managers. In contrast, Twine is simpler for scaling

out because a job is exclusively managed by one scheduler
shard, and Resource Broker provides a simple interface to
manage the shared regional pool of machines.

4 Availability and Reliability

Compared with the traditional approach of deploying one
control plane per cluster, Twine’s regional control plane incurs
additional risks: 1) a control plane failure may impact all
jobs in a region as opposed to just a cluster, and 2) network
partitions may result in a regional Twine scheduler unable to
manage an isolated DC.

Design principles. We observe several design principles to
mitigate the risks listed above.

• All components are sharded: Each shard manages a
small fraction of machines and jobs in a region, limiting
the impact of a shard failure. Assuming Twine uses
20 scheduler shards to manage a 150MW region, each
scheduler shard manages 7.5MW worth of machines,
which is no bigger than a traditional cluster.

• All components are replicated: Consider schedulers
for example: replicas of a scheduler shard sit in differ-
ent DCs and elect a leader to process requests. If the
leader fails or its network is partitioned from other DCs,
a follower in another DC becomes the new leader.

• Tasks keep running: Even if all Twine components
fail, existing tasks continue to run. New jobs cannot
be created and existing tasks cannot be updated until
Twine recovers. If a DC is partitioned from the scheduler,
existing tasks in the DC continue to run.

• Rate-limit destructive operations: It is possible that
a bug or fault might cause Twine to perform a large
number of destructive operations quickly, e.g., shuffling
tasks across machines at a fast pace. We protect against
this failure by ensuring all components have fail-safe
mechanisms to rate-limit destructive operations.

• Network redundancy: Fabric Aggregator connects our
data centers in a region and can “suffer many simulta-

neous failures without compromising the overall per-

formance of the network [14].” We did not experience
within-region network partitioning as a major challenge.

Operational principles. In addition to the design principles
listed above, we observe several operational principles.

• Twine manages itself: To avoid developing yet another
cluster management tool to manage Twine installations,
all Twine components, except for the agent, run as Twine
jobs. We developed automation to bootstrap the Twine
ecosystem starting from scratch. The Twine agent has
no dependencies on other Twine components and our
bootstrapping mechanism directly sends commands to
agents to start other Twine components as Twine tasks.
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• Twine manages its dependencies: As we built confi-
dence in Twine’s bootstrapping automation, we ran all
systems that Twine depends on as normal Twine jobs,
including ZooKeeper, Delos [4], Configerator [35], and
a few other systems for storage, security, and continuous
delivery. Twine managing itself and its dependencies im-
proves reliability by eliminating the risk associated with
maintaining specialized cluster management tools [8].

• Gradual but frequent software release: A new release
progresses gradually across regions and shards so that
a bug does not hit the entire fleet instantaneously. All
components are released weekly or more frequently to
lower the risk associated with large changesets.

• Recurring large-scale failure test [38]: This happens
regularly in production to verify Twine’s reliability.

These principles help us run Twine reliably. We share one
anecdote where rate-limiting mitigated the risk caused by
the complex interplay of four concurrent events: 1) shifting
traffic from region X to region Y , 2) performing a load test
in region Y , 3) adding new server racks to region Y before
removing old racks, and 4) software upgrade for the web tier.
The first three events led to increased power consumption
in region Y and power capping on many machines. The
scheduler rate-limited the number of tasks moving away from
power-capped machines. This rate-limiting halted the web
tier’s software upgrade and protected against further loss of
capacity. In this incident, rate-limiting provided a safety net
before we debugged the incident.

5 Evaluation

Our evaluation answers the following questions:

1. How does TaskControl deal with complex scenarios that
impact an application’s availability?

2. How effective is autoscaling for production use?

3. How effective are host profiles in improving perfor-
mance? What is the overhead of switching host profiles?

4. How cost effective are small machines in replacing big
machines?

5.1 TaskControl

Figure 14 demonstrates how TaskControl handles the complex
situation of a software release and machine failures happen-
ing concurrently. This experiment uses a caching service
managed by Shard Manager (§2.7). The cache’s data are par-
titioned into 15,000 shards, and each shard runs three replicas.
The 45,000 shard replicas are hosted by 1,000 Twine tasks.
Shard Manager’s TaskController helps minimize the risk of a
shard losing more than one replica, i.e., driving Figure 14b’s
2 replicas down curve towards zero.
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Figure 14: TaskControl helps a stateful service uphold its availability in the
event of a concurrent software release and hardware failures.

Let Tx denote the moment of x seconds into the experiment.
At T0, the user initiates a rolling update of the service. In Fig-
ure 14a, at T0, the TaskController allows 274 tasks to update
concurrently (the bottom curve). It does not allow any of the
other 726 tasks to update (the top curve) because that would
cause some shards to lose their second replicas. In Figure 14b,
at T0, 12,264 shards lose one replica (the top curve) because
they are hosted by the 274 tasks undergoing update. No shard
loses its second replica (the bottom curve) because of the
TaskController’s precise shard availability calculation.

During the Failure Duration in the figures (between
T120 and T415), we inject the failure of one MSB that kills
50 tasks causing 1,292 shards to lose their second replicas,
because those shards are also hosted by the 274 tasks under-
going update. The spike in Figure 14b’s bottom curve reflects
the impact on the 1,292 shards.

By T240, the 274 tasks are updated and become healthy.
As a result, even if the 50 tasks in the failed MSB are still
down, shards with 2 replicas down drop to zero (the bot-
tom curve in Figure 14b). At T240, the TaskController care-
fully selects the second batch of 214 tasks to update, ensuring
no overlap between the shards hosted by the 214 tasks and
the shards hosted by the 50 tasks in the failed MSB (see Ack
excludes failed shards in Figure 14a). This careful task
selection keeps Figure 14b’s 2 replicas down curve at zero
throughout the rest of the experiment.

5.2 Autoscaling

Currently, we autoscale ≈800 services. Figure 15 shows the
efficacy of autoscaling on our web tier, which is our largest
service. Autoscaling frees up to 25% of the web tier’s ma-
chines during off-peak hours. The bottom curve represents
the web tier’s CPU utilization. The middle curve represents
the web tier’s real job size, i.e., the number tasks in the job.
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Figure 15: Autoscaling the web tier. The CPU spikes are caused by the
continuous-delivery process restarting tasks.

The top curve represents autoscaling’s recommendation for
the job’s ideal size. The CPU utilization closely follows the
recommended job size, demonstrating the prediction’s ac-
curacy. Usually, the real job size also closely follows the
recommended job size, but we intentionally choose a week
when they diverged during peak hours.

During the week of March 12, 2020, our online products
experienced a drastic traffic growth [19] related to COVID-19,
causing a temporary capacity shortage. As a result, the real
job size could not grow to follow the recommended job size
during peak hours. The web tier’s TaskController adapted
to this unexpected situation without any manual interven-
tion. During peak hours, it advanced the continuous-delivery
software releases more slowly, bringing down fewer tasks con-
currently to limit temporary capacity losses. During non-peak
hours, it advanced software releases at a normal pace.

5.3 Host Profiles
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Figure 16: Host profiles improve the throughput of memcache.

Host profile’s impact on application performance. We use
memcache as an example to demonstrate how host profiles
help improve application performance. We deploy a highly
optimized version of memcache [30] on tens of thousands of
machines. Figure 16 compares three host profiles versus the
default settings. The baseline achieves 930K lookups per sec-
ond on an 18-core/36-hyperthread machine. This extremely
high throughput drives the need for host customization.

The CPU affinity host profile improves the throughput
by dedicating 12 hyperthreads to handling NIC IRQs, one
hyperthread to memcache’s busy-loop thread, and 23 hyper-
threads to memcache’s worker threads. This separation avoids
unnecessary interrupts and context switches. Addl’t BPF

cfg further reduces the overhead of certain BPF programs by

lowering the packet sampling rate and disabling certain packet
marking. Addl’t sysctl further tunes 17 CPU schedul-
ing and network settings, where improvements in reliability
are more important than the mild performance gains. For
example, based on lessons from past incidents, we tuned
net.ipv4.tcp_mem to alleviate TCP’s memory pressure un-
der high loads in order to prevent cascading failures.

Overhead of switching host profiles. Figure 17 shows the
host profile switching time. We discuss both ends of the
performance spectrum. The P90 for enabling CPU Turbo

takes 3.0 seconds. The P90 for enabling HugePages takes
244 seconds, as memory fragmentation sometimes causes
the Linux kernel to fail to allocate hugepages and a machine
reboot may be needed to finish the operation. To alleviate the
problem, we recently developed a kernel improvement [33]
that achieves above 95% success rate for hugepage allocation;
we are still in the process of deploying it to production.
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Figure 17: P90 host profile switching time for different host profiles.

On average, a machine changes its host profile once every
two days; hence the overall overhead is negligible. Figure 18
depicts how autoscaling impacts host profile changes.

Figure 18: Autoscaling is the biggest driver for host profile changes. The
load of an active last minute (ALM) tracking service is proportional to the
number of people using our online products. In response to our products’
changing load, Twine moves machines to entitlements running ALM-tracking
services during hour 3 to 8 and to entitlements running non-ALM-tracking
services during hour 13 to 20, respectively.

5.4 Power-efficient Small Machines

The total cost of ownership (TCO) of a machine includes the
hardware cost, power consumption, and operating expense.
We compare the TCO of small machines vs. big machines
using the following metrics:

• B: The TCO of a big machine (dual CPUs and 256GB
RAM) is B times that of a small machine (one CPU and
64GB RAM).
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• S: A service needs S number of small machines to re-
place a big machine and achieve the same performance.

• S
B

: Relative TCO (RTCO) of a service running on small
machines vs. on big machines.

Figure 19 shows the RTCO of 22 fleet-wide representative
services. One service has worse than 100% RTCO, seven
use the maximum prescribed 100% RTCO, and a majority of
services are able to achieve a better RTCO.

33%

48%

67%
73% 73% 76% 77% 80% 83%

88%
93% 93% 95% 97% 100%100%100%100%100%100%100%

110%

R
e
la

ti
v

e
  
T

C
O

Different Services

Figure 19: The relative total cost of ownership of services running on small
machines vs. on big machines. Smaller numbers mean bigger savings.

The first service in Figure 19 achieves a low 33% RTCO
by adopting Shard Manager (§2.7). The service is sharded;
its biggest shard has 20x higher load than its smallest shard
and the load varies. The service’s previous static-sharding
solution did not work well, whereas Shard Manager is able
to balance the load via shard migration. After switching to
small machines, the service better utilizes the overall higher
CPU count of small machines under the same TCO.

The second service achieves a 48% RTCO by moving from
an in-memory data store to an external flash-based database.
Its 48% RTCO includes the cost of the database, which is
only a small part of the total TCO.

The service with 76% RTCO is TAO [7], our social graph
cache. CacheLib [5] provides transparent tiered memory on
top of 64GB RAM and TBs of local flash to replace 256GB
RAM (§2.8). Its 76% RTCO includes the cost of flash.

One outlier service has 110% RTCO, meaning it costs 10%
more to run on small machines. The memory is used to store
certain data indices and ML models that rank the indices.
We are improving the service to target 90% RTCO, e.g., by
leveraging CacheLib [5] to provide tiered memory.

Across all services in our fleet beyond the examples in
Figure 19, we achieved an average 83% RTCO, i.e., 17% fleet-
wide TCO savings. This also includes 18% power savings.
Overall, we have been successful at using small machines.

6 Experience with Shared Infrastructure

As described in §1, Twine has allowed us to grow twshared,
our shared compute pool, from ≈15% in 2019 to ≈56% in
2020. We share our experience with growing twshared.

6.1 Economies of Scale in twshared

Shared infrastructure provides economies of scale by reducing
hardware, development, and operational costs. Examples:

• Capacity buffer consolidation. As services migrated
into twshared, we consolidated siloed buffers for soft-
ware releases, maintenance, fault tolerance, and growth
into centralized buffers, improving utilization by ≈3%.

• Turbo Boost. We aggressively enabled Turbo on proces-
sor cores and relied on ReBalancer to mitigate power
hotspots, improving utilization by ≈2% in 2020.

• Autoscaling. Autoscaling freed up over-provisioned ca-
pacity, reclaiming ≈2% of capacity in 2020.

As shown in Figure 20, as of October 2020, twshared’s
average memory and CPU utilization are ≈40% and ≈30%,
respectively. For comparison, the figure also shows utilization
for private pools, our legacy pools of customized machines
dedicated to individual workloads. We plan to improve utiliza-
tion through multiple approaches, such as the one described
below. Our fleet is dominated by user-facing services that
provision capacity for peak load. Autoscaling frees some of
this over-provisioned capacity during off-peak hours and pro-
vides it as opportunistic capacity for other workloads to use.
Unfortunately, we do not yet provide service-level objectives
(SLOs) on the availability of opportunistic capacity, which
is limiting adoption and usage of all available capacity. As
we establish SLOs for opportunistic capacity, improve stack-
ing, and consolidate capacity buffers, we expect twshared’s
utilization to increase.
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Figure 20: Daily average CPU and memory utilization of twshared and
private pools circa October 2020.

6.2 Path to Shared Infrastructure

We had broad conversations with colleagues in industry and
learned that while partial consolidation of workloads is com-
mon, no large company has achieved near 100% shared in-
frastructure consolidation. Further, we learned that cultural
challenges are as significant as technical challenges. Below,
we describe our strategy and major milestones towards mi-
grating all non-storage workloads into twshared.

Make Twine capable of supporting a large shared pool.

Scalability, entitlements, host profiles, and TaskControl are
Twine’s important features that enabled workload consolida-
tion. The flexibility offered by host profiles and TaskControl
ensures that twshared can support both 1) the general needs
of thousands of services, and 2) the specialized needs of a
smaller set of services that consume the majority of capacity.
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Figure 21: Breakdown of machines in our fleet as of August 2018. Each
small rectangle inside a category represents a private pool, and its size
is proportional to the number of machines in the private pool. There were
hundreds of private pools, many of which were small in size. The percentages
at the top reflect the number of machines in each category relative to all
machines globally. From August 2018 to October 2020, the breakdown
evolved from [8%, 14%, 65%, 13%] to [13%, 5%, 26%, 56%], where the
numbers match the left-to-right categories in the figure.

Publicize the growth and health of twshared. We devel-
oped a tool to show the realtime breakdown of our fleet and
the growth of twshared. A snapshot is shown in Figure 21.
We consolidated the fragmented mechanisms of measuring
machine health into the Health Check Service. Continuous
improvements have resulted in twshared running healthier
than private pools, 99.6% vs. 98.3%.

Set a strong example for others to follow. Early on, we
targeted the web tier, our largest private pool. It directly serves
external users of our company’s products and any outage
would be immediately noticeable. We finished migrating the
web tier into twshared mid-2019. As the web tier team is
highly respected in the company, their testimony motivated
others to follow.

Make migration mandatory. After the web tier migration,
we gained company-wide support for mandatory migration.
Further, we established that all new compute capacity will
land only in twshared. This mandate, along with Twine’s
flexibility of supporting customization through TaskCon-
trol and host profiles, has made twshared our ubiquitous
compute pool.

6.3 Case Study of twshared Migration

PGx is a large product group that runs hundreds of diverse
services on hundreds of thousands of machines. Their services
vary in size from a few machines to tens of thousands, and
in complexity from computationally intensive ML training
to latency-sensitive ad delivery. Previously, their fleet was
fragmented into tens of private pools per region. The first
PGx service migrated into twshared in January 2020; as of
September 2020, more than 70% of PGx machines run in
twshared. Given the size and diversity of their services, we
expect the migration to finish in late 2021.

PGx services use hundreds of twshared entitlements; if a
service runs in multiple regions, it needs one entitlement per
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Figure 22: CDF of PGx entitlement size. The distribution is highly skewed.
The largest 54 entitlements account for 70% of PGx capacity in twshared.

region. Figure 22 shows the size distribution with the biggest
entitlement running ≈2K jobs on ≈15K machines.

Accommodating workload-specific requirements helps on-
board PGx services onto twshared. For instance, many PGx

services run A/B tests in production, e.g., to evaluate the ef-
fectiveness of a new model–these services need to explicitly
configure the processor generation for their tasks to prevent
performance variations between hardware types from pollut-
ing their test results.

The capacity guaranteed by entitlements and private pools
account for 55% of PGx machines. The remaining 45% are
from opportunistic sources including capacity buffers, ma-
chines freed up by autoscaling, and unused portions of other
teams’ entitlements. Optimus is an application-level sched-
uler that runs atop Twine to manage opportunistic capacity.
When opportunistic capacity is not available, some services
gracefully degrade their quality of service.

Jobs with a TaskController consume 36% of PGx capacity
in twshared; in total these jobs use three different TaskCon-
trollers, including the one from Shard Manager [16]. About
95% of PGx capacity is consumed by entitlements that use
some combination of these three host profile settings:

1. If a service does frequent flash writes, it prefers the flash
drive to expose only a fraction of the flash capacity in
order to reduce write amplification and burn rate.

2. If a service can fully utilize a whole machine and does
not stack with other services, we disable the cgroup2
CPU controller to eliminate its overhead.

3. Because our data centers are power constrained and CPU
Turbo consumes extra power, we enable Turbo only for
services that can benefit significantly from Turbo and are
running in selected data centers with sufficient power.

Overall, our experience with PGx indicates that, despite
the significant upfront effort needed for migration, even large
and varied services are motivated to adopt shared infrastruc-
ture that reduces their operational burden. PGx’ success in
using opportunistic capacity at a large scale has spurred us to
develop SLO guarantees and drive broader adoption (§6.1).
Entitlements, TaskControl, and host profiles enable customiza-
tion in a shared pool and were the features that enabled the
migration. On the other hand, PGx services have grown to
hundreds of entitlements within 9 months, motivating us to
address entitlement fragmentation (§7.1).
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7 Lessons Learned

Evolving Twine and growing twshared has taught us several
lessons. We share some highlights and lowlights below.

7.1 Entitlement Fragmentation

We overloaded entitlements with two responsibilities: fleet
partitioning and quota management. Entitlements partition
millions of machines into smaller units that can be effectively
managed by scheduler shards. Twine jobs can only stack
within the same entitlement, implying that an entitlement be
sized at a few thousand machines, similar to a Borg [39] cell.

On the other hand, leveraging entitlements for quota man-
agement results in small entitlements. For example, an impor-
tant service may wish for an entitlement with 10 tasks rather
than a larger entitlement shared with other services to protect
against the risk that a rogue service grows unexpectedly and
uses up the entitlement quota.

We are in the process of splitting an entitlement’s respon-
sibility into two new abstractions: a materialization for fleet
partitioning and a stackable reservation for quota manage-
ment. A materialization functions as a pseudo cluster, has a
host profile associated with it, and is always large enough to
enable job stacking across thousands of machines.

7.2 Controlled Customization

Our goal is ubiquitous shared infrastructure. A difficult les-
son we learned from the first six years of operating twshared
was that customization is key to migrating services over. For
instance, without host profiles, our web tier and memcache ser-
vices would not run in twshared as their performance would
regress by 11% and 10.2% respectively. TaskControl has pro-
vided a path for stateful services such as TAO [7] and MySQL
to deprecate their custom cluster management tooling and
adopt Twine and shared infrastructure.

We prioritize maintainability when deciding what cus-
tomization to permit. Currently, we offer 17 host profiles
and 16 TaskControllers to support thousands of services. Our
recent migration of ≈70% of a large product group’s ser-
vices into twshared (§6.3) leveraged existing host profiles
and TaskControllers.

In hindsight, we permitted some customizations that ap-
peared useful initially, but later became barriers for fleet-wide
optimizations. For example, a job’s tasks are identical by de-
fault, but we provided the ability to customize individual tasks,
including the executables to run, command line options, en-
vironment variables, and restart policies. Developers abused
this customization to implement simple sharding so that each
task does different work. Autoscaling changes the number
of tasks in a job and breaks the job’s task customization. As
we enable autoscaling for all ALM-tracking services, we are
removing task customization and migrating these services to
use Shard Manager [16] instead.

7.3 Supporting Global Services

Many developers wish to run a global service without wor-
rying about operational challenges: which regions to deploy
to, how much capacity is needed in each region, and how
to handle regional failures. We currently operate multiple
global Twine deployments that spread a global job’s tasks
across regions, similar to how a regional Twine deployment
spreads a regional job’s tasks across data centers in a region.
Currently, global jobs account for 8% of all our jobs.

We have learned over time that global Twine deployments
did not provide the right abstraction for managing global ser-
vices. Machines in a region are largely fungible due to the
high network bandwidth and low latency within a region, but
this is not true for machines distributed across regions. Hence,
it is better to explicitly decompose a service’s global capacity
needs into capacity needs for specific regions, as opposed to
global allocators making ad hoc decisions on which regions
to get machines from. We are replacing global Twine de-
ployments with a new Federation system built atop regional
Twine deployments to provide stronger capacity guarantees
and more holistic support for a global-service abstraction.

7.4 Challenges with Small Machines

Our decision to leverage small machines brings with it nu-
merous trade-offs. The effort to rearchitect and reimplement
memory-capacity-bound services was higher than we antic-
ipated. On the other hand, we leveraged this opportunity to
holistically modernize our legacy services, e.g., moving from
static sharding to dynamic sharding for better load balancing.
As small machines run contrary to the industry practice of fa-
voring big machines; we need to work closely with hardware
vendors to optimize machines for our internal workloads, e.g.,
removing unneeded NUMA components.

That said, the 18% power efficiency win (§5.4) from small
machines has been worth the above trade-offs. We intend
to continue using small machines in the coming years, but
are also prepared to evolve our hardware strategy as needed.
Two factors lead to our decision of adopting small machines:
1) our legacy large services were optimized for utilizing en-
tire machines running in private pools, and 2) our stacking
technology needed to mature and improve support for perfor-
mance isolation [42]. As our services undergo architectural
changes to run effectively in twshared, and we improve our
stacking technology, we may revisit our hardware strategy.

8 Related Work

Scalability and scheduling performance. Kubernetes [25]
and Hydra [9] scale out through federation, whereas Twine
scales out through sharding. Figures 13 compares the two
approaches. A large body of work [6, 15, 20, 31] focuses on
improving batch scheduling throughput and latency. Twine
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delegates the handling of short-lived batch jobs to application-
level batch schedulers. This separation of concerns helps
Twine scale, as discussed in §3.2.

Entitlements. Twine has some similarity to the two-level
schedulers (Mesos [17], YARN [37], Apollo [6], and
Fuxi [44]), with Twine entitlements as resource offers and
Twine scheduler shards as Application Masters (or frame-

works in Mesos). However, the bottom-level Resource Man-
ager (or Master in Mesos) is designed for the scale of a single
cluster. In contrast to the single-master two-level architec-
ture, we propose a three-level architecture with sharding so
our design scales out: Resource Broker manages machines,
Twine scheduler manages containers, and Application-level
schedulers manage workloads such as batch and ML.

Kubernetes’ cluster autoscaler [24] can respond to work-
load growth by provisioning VMs in a public cloud and adding
them to a node pool. Kubernetes’ resizable node pool cor-
responds to Twine’s entitlement, and a public cloud’s avail-
able resources correspond to Twine’s shared free machine
pool maintained by Resource Broker. Decoupling Kuber-
netes and cloud makes the setup flexible, but also misses
optimization opportunities compared with Twine’s integrated
ecosystem. Multiple Kubernetes clusters run independently
without coordination, whereas Twine’s ReBalancer performs
global optimization across entitlements, and an entitlement
can be migrated across scheduler shards.

TaskControl. The two-level schedulers (Mesos [17],
YARN [37], Apollo [6], and Fuxi [44]) allow their appli-
cations to provide custom Application Masters. The interface
with Application Masters is for negotiating resource alloca-
tion, e.g., “requesting N containers with X CPU and Y mem-

ory,” whereas the TaskControl API is for negotiating lifecycle
management, e.g., “delaying restarting task T .”

Kubernetes [23]’s custom controllers provide a universal
extension framework that can be used to implement various
custom functions like autoscaling and injecting sidecars for
traffic routing. In contrast, TaskControl exclusively focuses
on allowing or delaying task lifecycle operations. This nar-
row interface strikes a balance between standardization and
customization (§7.2) and prevents proliferation of customiz-
ing all aspects of the Twine control plane. We are unaware
of any Kubernetes custom controller that specifically offers
extension points to allow or delay task lifecycle operations.

Azure supports update domains and fault domains [3] and
the example stateful service in Figure 2 can improve availabil-
ity by spreading its data shards’ replicas across those domains.
However, in the event of a machine failure, Azure may still
proceed with a rolling update that can lead to unavailable
shards because it does not know precisely how the shard repli-
cas are spread across fault domains and update domains.

Host profiles. Paragon [12] schedules a job on machines
that are beneficial to the job’s performance, but it does not
reconfigure a machine.

Some systems statically partition machines in a cluster and
preconfigure their hardware and OS settings to suit different
workloads. Others dynamically adjust predetermined settings
(e.g., Turbo [40]) based on runtime profiling, while disallow-
ing other customizations (e.g., btrfs vs. ext4). We believe
that Twine is the first system that 1) allows workloads to pro-
vide customized hardware and OS settings to run in a shared
machine pool and 2) dynamically reconfigures a machine just-
in-time as the workload is scheduled onto the machine. On
average, Twine reconfigures a machine once every two days,
primarily due to Autoscaling (see Figure 18).

Power-efficient hardware. A large body of work studies
power-efficient computing [1, 10, 27]. Our infrastructure is
unique in 1) using power-efficient small machines as a uni-
versal computing platform, and 2) consolidating towards a
single compute machine type (one CPU and 64GB RAM), as
opposed to offering a variety of high-memory or high-CPU
machine types. Both approaches required our workloads to
make software architectural changes that would be challeng-
ing in a public cloud with external customer workloads.

Overcommitment and autoscaling. Past work overcommits
CPU and memory by colocating batch jobs and online ser-
vices [11, 22, 39, 43]. Twine does not overcommit CPU or
memory by default, although a job owner can explicitly con-
figure their job to do so. On the other hand, we overcommit
power by default [41], as power is our most constrained re-
source. Twine helps mitigate power hotspots by relocating
tasks across data centers. Twine’s SRM uses historical data
to predictably adjust the number of tasks in a job. Borg’s
Autopilot [34] adjusts the CPU and memory allocated to each
task–this is an area of future work for Twine.

9 Conclusion

We identify existing cluster management systems’ limitations
in supporting large-scale shared infrastructure. We describe
our novel solution that allowed us to scale Twine to manage
one million machines in a region, move jobs across phys-
ical clusters, collaborate with applications to manage their
lifecycle, support host customization in a shared pool, use
power-efficient small machines to achieve higher performance
per watt, and employ autoscaling to improve machine utiliza-
tion. We share our experience with twshared and our strategy
towards ubiquitous shared infrastructure.
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