
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/317420540

Kafka versus RabbitMQ: A comparative study of two industry reference

publish/subscribe implementations: Industry Paper

Conference Paper · June 2017

DOI: 10.1145/3093742.3093908

CITATIONS

41
READS

3,053

2 authors:

Some of the authors of this publication are also working on these related projects:

Kurdish Language Processing Project (KLPP) View project

Erasure Coding for Storage View project

Philippe Dobbelaere

Nokia Bell Labs

6 PUBLICATIONS 81 CITATIONS

SEE PROFILE

Kyumars Sheykh Esmaili

ETH Zurich

31 PUBLICATIONS 306 CITATIONS

SEE PROFILE

All content following this page was uploaded by Kyumars Sheykh Esmaili on 23 June 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/317420540_Kafka_versus_RabbitMQ_A_comparative_study_of_two_industry_reference_publishsubscribe_implementations_Industry_Paper?enrichId=rgreq-5f6bd4c11568fbedf574f910ed631c40-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQyMDU0MDtBUzo2NDA2MjExMjc2NjM2MThAMTUyOTc0NzM4Nzk5Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/317420540_Kafka_versus_RabbitMQ_A_comparative_study_of_two_industry_reference_publishsubscribe_implementations_Industry_Paper?enrichId=rgreq-5f6bd4c11568fbedf574f910ed631c40-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQyMDU0MDtBUzo2NDA2MjExMjc2NjM2MThAMTUyOTc0NzM4Nzk5Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Kurdish-Language-Processing-Project-KLPP?enrichId=rgreq-5f6bd4c11568fbedf574f910ed631c40-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQyMDU0MDtBUzo2NDA2MjExMjc2NjM2MThAMTUyOTc0NzM4Nzk5Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Erasure-Coding-for-Storage?enrichId=rgreq-5f6bd4c11568fbedf574f910ed631c40-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQyMDU0MDtBUzo2NDA2MjExMjc2NjM2MThAMTUyOTc0NzM4Nzk5Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-5f6bd4c11568fbedf574f910ed631c40-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQyMDU0MDtBUzo2NDA2MjExMjc2NjM2MThAMTUyOTc0NzM4Nzk5Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Philippe-Dobbelaere?enrichId=rgreq-5f6bd4c11568fbedf574f910ed631c40-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQyMDU0MDtBUzo2NDA2MjExMjc2NjM2MThAMTUyOTc0NzM4Nzk5Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Philippe-Dobbelaere?enrichId=rgreq-5f6bd4c11568fbedf574f910ed631c40-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQyMDU0MDtBUzo2NDA2MjExMjc2NjM2MThAMTUyOTc0NzM4Nzk5Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Philippe-Dobbelaere?enrichId=rgreq-5f6bd4c11568fbedf574f910ed631c40-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQyMDU0MDtBUzo2NDA2MjExMjc2NjM2MThAMTUyOTc0NzM4Nzk5Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kyumars-Sheykh-Esmaili?enrichId=rgreq-5f6bd4c11568fbedf574f910ed631c40-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQyMDU0MDtBUzo2NDA2MjExMjc2NjM2MThAMTUyOTc0NzM4Nzk5Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kyumars-Sheykh-Esmaili?enrichId=rgreq-5f6bd4c11568fbedf574f910ed631c40-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQyMDU0MDtBUzo2NDA2MjExMjc2NjM2MThAMTUyOTc0NzM4Nzk5Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/ETH-Zurich?enrichId=rgreq-5f6bd4c11568fbedf574f910ed631c40-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQyMDU0MDtBUzo2NDA2MjExMjc2NjM2MThAMTUyOTc0NzM4Nzk5Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kyumars-Sheykh-Esmaili?enrichId=rgreq-5f6bd4c11568fbedf574f910ed631c40-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQyMDU0MDtBUzo2NDA2MjExMjc2NjM2MThAMTUyOTc0NzM4Nzk5Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kyumars-Sheykh-Esmaili?enrichId=rgreq-5f6bd4c11568fbedf574f910ed631c40-XXX&enrichSource=Y292ZXJQYWdlOzMxNzQyMDU0MDtBUzo2NDA2MjExMjc2NjM2MThAMTUyOTc0NzM4Nzk5Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Industry Paper: Kafka versus RabbitMQ
A comparative study of two industry reference publish/subscribe implementations

Philippe Dobbelaere
Nokia Bell Labs

Antwerp, Belgium

Kyumars Sheykh Esmaili
Nokia Bell Labs

Antwerp, Belgium

ABSTRACT
Publish/subscribe is a distributed interaction paradigmwell adapted
to the deployment of scalable and loosely coupled systems.

Apache Ka�a and RabbitMQ are two popular open-source and
commercially-supported pub/sub systems that have been around for
almost a decade and have seen wide adoption. Given the popularity
of these two systems and the fact that both are branded as pub/sub
systems, two frequently asked questions in the relevant online
forums are: how do they compare against each other and which
one to use?

In this paper, we frame the arguments in a holistic approach by
establishing a common comparison framework based on the core
functionalities of pub/sub systems. Using this framework, we then
venture into a qualitative and quantitative (i.e. empirical) compari-
son of the common features of the two systems. Additionally, we
also highlight the distinct features that each of these systems has.
A�er enumerating a set of use cases that are best suited for Rab-
bitMQ or Ka�a, we try to guide the reader through a determination
table to choose the best architecture given his/her particular set of
requirements.

CCS CONCEPTS
•So�ware and its engineering →Message oriented middle-
ware; Publish-subscribe / event-based architectures; •General
and reference →Evaluation;

KEYWORDS
Publish/Subscribe Systems, Message Brokers, Apache Ka�a, Rab-
bitMQ, Log Files, AMQP, Performance, Reliability

ACM Reference format:
Philippe Dobbelaere and Kyumars Sheykh Esmaili. 2017. Industry Paper:
Ka�a versus RabbitMQ. In Proceedings of DEBS ’17, Barcelona, Spain, June
19-23, 2017, 12 pages.
DOI: 10.1145/3093742.3093908

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
DEBS ’17, Barcelona, Spain
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5065-5/17/06. . .$15.00
DOI: 10.1145/3093742.3093908

1 INTRODUCTION
�e Internet has considerably changed the scale of distributed sys-
tems. Distributed systems now involve thousands of entities �� po-
tentially distributed all over the world ��whose location and behav-
ior may greatly vary throughout the lifetime of the system. �ese
constraints underline the need for more �exible communication
models and systems that re�ect the dynamic and decoupled na-
ture of the applications. Individual point-to-point and synchronous
communications lead to rigid and static applications, and make the
development of dynamic large-scale applications cumbersome [14].
To reduce the burden of application designers, the glue between
the di�erent entities in such large-scale se�ings should rather be
provided by a dedicated middleware infrastructure, based on an ad-
equate communication scheme. �e publish/subscribe interaction
scheme provides the loosely coupled form of interaction required
in such large scale se�ings [14].

Apache Ka�a [1] and RabbitMQ [4] are two popular open-source
and commercially-supported pub/sub systems (by Con�uent Inc.
and Pivotal) that have been around for almost a decade and have
seen wide adoption in enterprise companies.

Despite commonalities, these two systems have di�erent his-
tories and design goals, and distinct features. For example, they
follow di�erent architectural models: In RabbitMQ, producers pub-
lish (batches of) message(s) with a routing key to a network of
exchanges where routing decisions happen, ending up in a queue
where consumers can get at messages through a push (preferred) or
pull mechanism. In Ka�a producers publish (batches of) message(s)
to a disk based append log that is topic speci�c. Any number of
consumers can pull stored messages through an index mechanism.

Given the popularity of these two systems and the fact that both
are branded as pub/sub systems, two frequently asked questions in
the relevant online forums are: how do they compare against each
other and which one to use?

While one can �nd several ad-hoc recommendations (some based
on pointed benchmarks) on the web, we found these hard to gen-
eralize to other applications and believe they do not do justice to
the systems under discussion. More speci�cally, (i) the bigger con-
text of such analysis, e.g., qualitative comparison or the distinct
features of each system is o�en overlooked, (ii) due to the fast pace
of developments, in particular in the case of Ka�a, some of the
reported results are stale and no longer valid, and (iii) it is di�cult
to compare results across di�erent experiments.

In this paper, we frame the arguments in amore holistic approach.
More concretely, we start (in Section 2) with a brief description
of the core functionalities of publish/subscribe systems as well as
the common quality-of-service guarantees they provide. We then
(in Section 3) give a high-level description of both Apache Ka�a
and RabbitMQ. Based on the framework established in Section 2,

227

DEBS ’17, June 19-23, 2017, Barcelona, Spain Philippe Dobbelaere and Kyumars Sheykh Esmaili

we venture into a qualitative (in Section 4) and quantitative (in
Section 5) comparison of the common features of the two systems.
In addition to the common features, we list the important features
that are unique to either of the two in Section 6. We next enumer-
ate a number of use case classes that are best-suited for Ka�a or
RabbitMQ, as well as propose options for a combined use of the
two systems in Section 7. �ere, we also propose a determination
table to help choose the best architecture when given a particular
set of requirements. Finally, we conclude the paper in Section 8.

2 BACKGROUND: PUB/SUB SYSTEMS
In this sectionwe highlight themain concepts of the publish/subscribe
paradigm, its required and desired guarantees as well as some of
its realizations out there.

�e primary purpose of this section is to establish a common
framework/language that will be used in the rest of the paper.
Knowledgeable readers may skip it.

2.1 Core Functionalities
Publish/subscribe is a distributed interaction paradigmwell adapted
to the deployment of scalable and loosely coupled systems.

Decoupling the publishers and subscribers is arguably the most
fundamental functionality of a pub/sub system. Eugster et al. [14]
have decomposed the decoupling that the pub/sub coordination
scheme provides along the following three dimensions:

(1) Entity decoupling: publishers and consumers do not
need to be aware of each other. �e pub/sub infrastructure
terminates the interaction in the middle.

(2) Time decoupling: �e interacting parties do not need to
be actively participating in the interaction, or even stronger,
switched on, at the same time.

(3) Synchronization decoupling: the interaction between
either producer or consumer and the pub/sub infrastruc-
ture does not synchronously need to block the producer
or consumer execution threads, allowing maximum usage
of processor resources at producers and consumers alike.

Another core functionality of pub/sub systems is routing logic
(also known as subscription model) which decides if and where a
packet that is coming from a producer will end up at a consumer.
�e di�erent ways of specifying the events of interest have led
to several subscription schemes, that balance �exibility against
performance. �e two main types of routing logic are the following:
• A topic-based subscription is characterized by the publisher

statically tagging the message with a set of topics, that can then be
used very e�ciently in the �ltering operation that decides which
message goes to which consumer. Most systems allow topic names
to contain wildcards.
• A content-based subscription does not need the producer

to explicitly tag the message with routing context. All data and
metadata �elds of the message can be used in the �ltering condition.
Consumers subscribe to selective events by specifying �lters using
a subscription language. Evaluating these complex �lters comes at
a high processing cost.

2.2 �ality-of-Service Guarantees
In addition to the aforementioned core functionalities of pub/sub
systems, they are also de�ned by a relatively large set of required
and desired guarantees that are generally referred to as �ality-of-
Service (QoS) guarantees [9, 11, 14].

For sake of simplicity, we have grouped the most important
pub/sub QoS guarantees into �ve separate categories and will ex-
plain them in the following sections.

It should be noted that an important assumption in this section
is the distributed nature of modern pub/sub systems. Distribution
is necessary (but not su�cient) to bring scalability. However, it
brings a number of technical problems that make the design and
implementation of distributed storage, indexing and computing a
delicate issue [7].

2.2.1 Correctness. As proposed in [28], correctness behavior
can be de�ned using three primitives: no-loss, no-duplication, no-
disorder. Building upon these primitives, the following two criteria
are relevant in pub/sub systems:
• Delivery Guarantees, the three common variants are:
◦ at most once (aka “best e�ort”; guarantees no-duplicates):

in this mode, under normal operating conditions, packets will be
delivered, but during failure packet loss might occur. Trying to do
be�er than this will always cost system resources, so this mode has
the best throughput.
◦ at least once (guarantees no-loss): in this mode, the system

will make sure that no packets get lost. Recovery from failures
might cause duplicate packets to be sent, possibly out-of-order.
◦ exactly once (guarantees no-loss and no-duplicates): this

requires an expensive end-to-end two phase commit.
• Ordering Guarantees, the three common variants here are:
◦ no ordering: absence of ordering guarantees is an ideal case

for performance.
◦ partitioned ordering: in this mode, a single partition can be

de�ned for each message �ow that needs to be consumed in-order.
While more expensive than the previous group, it can possibly have
high performance implementations.
◦ global order: due to the synchronization overhead, impos-

ing a global ordering guarantee across di�erent channels requires
signi�cant additional resources and can severely penalize perfor-
mance.

2.2.2 Availability. Availability is the capacity of a system to
maximize its uptime. Note that this implicitly assumes that the
system is already reliable: failures can be detected and repair actions
initiated.

2.2.3 Transactions. In messaging systems, transactions are used
to group messages into atomic units: either a complete sequence
of messages is sent (received), or none of them is. For instance,
a producer that publishes several semantically related messages
may not want consumers to see a partial (inconsistent) sequence of
messages if it fails during emission.

2.2.4 Scalability. �e concept of scalability refers to the ability
of a system to continuously evolve in order to support a growing
amount of tasks. In the case of pub/sub systems, scalability can
have various dimensions e.g., consumers/producers, topics and
messages.

2.2.5 E�iciency. Two common measures of e�ciency are the
latency (or response time), and the throughput (or bandwidth).

228

Industry Paper: Kafka versus RabbitMQ DEBS ’17, June 19-23, 2017, Barcelona, Spain

Latency. In any transport architecture, latency of a packet/message
is determined by the serial pipeline (i.e., sequence of processing
steps) that it passes through.

�roughput. �roughput of a transport architecture is the num-
ber of packets (or alternatively, bytes) per time unit that can be
transported between producers and consumers. Contrary to latency,
throughput can easily be enhanced by adding additional resources
in parallel.

For a simple pipeline throughput and latency are inversely pro-
portional.

It is important to point out that both e�ciency and scalability
o�en con�ict with other desirable guarantees [14]. For instance,
highly expressive and selective subscriptions require complex and
expensive �ltering and routing algorithms, and thus limit scala-
bility. Similarly, strong availability and delivery guarantees entail
considerable overheads, due to cost a�ached to persistence and
replication and the fact that missed events must be detected and
retransmi�ed.

2.3 Realizations
A large number of frameworks and libraries can be categorized as
having pub/sub messaging functionality. One approach to catego-
rize them is to locate them on a complexity spectrum that starts with
lightweight systems with fewer features and ends with complex
systems that o�er a rich set of functionalities.

At the lightweight side of the spectrum, we �nd ZeroMQ, Finagle,
Apache Ka�a, etc. Heavier examples include the Java Message Ser-
vice (JMS) implementations such as ActiveMQ, JBOSS Messaging,
Glass�sh, etc. AMQP 0.9, the popular and standardized pub/sub
protocol has several implementations such as RabbitMQ, Qpid, Hor-
netQ, etc. Even more complex and feature-rich are distributed
RPC frameworks that include pub/sub, e.g., MuleESB, Apache Ser-
viceMix, JBossESB, etc.

3 HIGH-LEVEL DESCRIPTION
In this section we give a brief description of the Apache Ka�a and
RabbitMQ systems. In particular, we look at the history/context
of their creation, their main design goals, as well as some notable
implementation and optimization details about them. Each of these
aspects can help us gain further insights about these systems and
hence be�er explain their di�erences.

3.1 Apache Kafka
Ka�a was originally built at LinkedIn as its centralized event
pipelining platform, replacing a disparate set of point-to-point
integration systems [17].

Ka�a is designed to handle high throughput (billions of mes-
sages) [17]. In its design, particular a�ention has been paid to the
e�cient handling of multiple consumers of the same stream that
read at di�erent speeds (e.g., streaming vs batch).

�e resulting system is a scalable publish-subscribe messag-
ing system designed around a distributed commit log [32]. High-
throughput is one advantage of the design of log aggregation sys-
tems over most messaging systems [17]. Data is wri�en to a set of
log �les with no immediate �ush to disk, allowing very e�cient
I/O pa�erns.

Figure 1: Kafka Architecture

Figure 2: RabbitMQ (AMQP) Architecture

Figure 1 shows the high-level architecture of Ka�a. Producers
send messages to a Ka�a topic that holds a feed of all messages
of that topic. Each topic is spread over a cluster of Ka�a brokers,
with each broker hosting zero or more partitions of each topic.
Each partition is an ordered write-ahead log of messages that are
persisted to disk. All topics are available for reading by any number
of consumers, and additional consumers have very low overhead.

Compared to the traditional pub/sub systems, the notion of a
consumer in Ka�a is generalized to be a group of co-operating
processes running as a cluster. Eachmessage in the topic is delivered
to one consumer in each of these consumer groups. As a result
the partition is the unit of parallelism of the topic and controls
the maximum parallelism of the consumers. Furthermore, because
each partition has a sole consumer within its group, the consuming
process can lazily record its own position, rather than marking
each message immediately, which is essential for performance.
If the process crashes before the position is recorded it will just
reprocess a small number of messages, giving at-least-once delivery
semantics.

Finally, it is worth noting that originally Ka�a relied heavily on
Apache Zookeeper [18] for the implementation of its control plane
logic, but the Zookeeper reliance is trimmed down with every re-
lease. Around v0.8.2, consumer management was transferred from
Zookeeper to a coordinator inside the broker. Still managed by
Zookeeper are controller and cluster management, topic and parti-
tion management, in-sync data replication and static con�gurations
like quotas and ACLs.

In summary, to meet the high-throughput requirements, Ka�a has
departed from the classic principles of messaging systems in a few
ways:
• It partitions up data so that production, brokering, and con-

sumption of data are all handled by clusters of machines that can
be scaled incrementally as load increases. Ka�a guarantees that

229

DEBS ’17, June 19-23, 2017, Barcelona, Spain Philippe Dobbelaere and Kyumars Sheykh Esmaili

messages from a single partition are delivered to a consumer in
order. However, there is no guarantee on the ordering of messages
coming from di�erent partitions.
•Messages are not “popped” from the log, but can be replayed

by the consumers (e.g. when handling consumer application errors)
• Additionally, reader state is kept only by the consumers, imply-

ing that message deletion can only be based on a manually-tuned
retention policy, expressed either in message count or message age.

Furthermore, it also applies a number of very e�ective optimization
techniques, most notably:
• It uses batching at all stages of the pipeline (production, broker-

ing, and consumption) with signi�cant throughput improvements,
in some cases, more than 50x [17].
• It relies on persistent data structures and OS page cache. �e

operating system�s read-ahead strategy is very e�ective for op-
timizing the linear read pa�ern of consumers which sequentially
consume chunks of log �les. �e bu�ering of writes naturally pop-
ulates this cache when a message is added to the log, and this in
combination with the fact that most consumers are not far behind,
means a very high cache hit ratio making reads nearly free in terms
of disk I/O.

3.2 RabbitMQ
RabbitMQ is primarily known and used as an e�cient and scal-
able implementation of the Advanced Message�euing Protocol
(AMQP). Hence, below we �rst give a short introduction of AMQP,
and then brie�y explain the RabbitMQ implementation (and exten-
sions) of it.

3.2.1 AMQP. AMQP was born out the need for interoperability
of di�erent asynchronous messaging middlewares. More concretely,
while various middleware standards existed for synchronous mes-
saging (e.g., IIOP, RMI, SOAP, etc), the same did not hold true in
the world of asynchronous messaging, however, in which several
proprietary products exist and use their own closed protocols (e.g.
IBM Websphere MQ and Microso� Message �euing) [31]. Java
Message Service (JMS) speci�cation was arguably the best-known
standard in the asynchronous messaging world. However, it is
merely an interface standard and does not specify a standard proto-
col. Furthermore, JMS was limited to Java, which is only one viable
implementation technology within the messaging middleware do-
main.

What is now known as AMQP originated in 2003 at JPMorgan
Chase. From the beginning AMQP was conceived as a co-operative
open e�ort. JPMorgan Chase partnered with Red Hat to create
Apache Qpid. Independently, RabbitMQ was developed in Erlang
by Rabbit Technologies.

Around 2011, the AMQP standard bifurcated away from the
widely-adopted v0.9.1 (a slight variation of version 0.9 [30]) func-
tionality with the creation of AMQP 1.0.

�e design of AMQP has been driven by stringent performance,
scalability and reliability requirements from the �nance community.
However, its use goes far beyond the the �nancial services indus-
try and has general applicability to a broad range of middleware
problems.

As shown in Figure 2, AMQP takes a modular approach, divid-
ing the message brokering task between exchanges and message
queues [31]:
• An exchange is essentially a router that accepts incoming

messages from applications and, based on a set of rules or criteria,
decides which queues to route the messages to.
• A message queue stores messages and sends them to message

consumers. �e storage medium�s durability is entirely up to the
message queue implementation –message queues typically store
messages on disk until they can be delivered– but queues that store
messages purely in memory are also possible.

Joining together exchanges and message queues are bindings,
which specify the rules and criteria by which exchanges route
messages. Speci�cally, applications create bindings and associate
them with message queues, thereby determining the messages that
exchanges deliver to each queue.

Within an AMQP connection, channels can be used to isolate
message streams from each other. In a multi-threaded environment,
individual threads are typically assigned their own channel.

3.2.2 RabbitMQ Implementation and Extensions of AMQP. Rab-
bitMQ, by default, supports AMQP 0.9.1 and can support AMQP
1.0 through a plugin.

RabbitMQ goes beyond the AMQP guarantees in a number of
aspects: it has more e�cient acknowledgment mechanism for the
publishers, has be�er-de�ned transactional behavior, has be�er
support for asynchronous batch transfer, supports a degree of cou-
pling between producers and consumers (i.e the �ow control). For
a detailed list of extensions, see [2].

RabbitMQ is implemented in Erlang, which implies it uses the
Actor Model as communication primitive between lightweight Er-
lang processes. It therefore pro�ts from the Erlang Open Telecom
Platform (OTP) infrastructure which greatly facilitates the creation
and management of high-availability architectures. Erlang and the
actor model are the prime reasons for the scalability capabilities
of RabbitMQ in terms of number of topics and queues, and bring
clustering capabilities at a very low design overhead.

Compared to Ka�a, RabbitMQ is much closer to the classic
messaging systems. More speci�cally, RabbitMQ: (i) takes care
of most of the consumption bookkeeping, (ii) its main design goal
is to handle messages in DRAM memory, (iii) the queue logic is
optimized for empty-or-nearly-empty queues and the performance
degrades signi�cantly if messages are allowed to accumulate [5].

4 COMMON FEATURES: QUALITATIVE
COMPARISON

In this section we give a qualitative comparison of Ka�a and Rab-
bitMQ across a number of common pub/sub features.

It should be noted that for the sake of simplicity, we only con-
sider recent stable releases of the two systems (i.e. Ka�a 0.10 and
RabbitMQ 3.5).

4.1 Time Decoupling
Both systems can be used to bu�er a large batch of messages that
needs to be consumed at a later time or at a much lower rate than
it is produced.

230

Industry Paper: Kafka versus RabbitMQ DEBS ’17, June 19-23, 2017, Barcelona, Spain

To this end, RabbitMQ will store the messages in DRAM as long
as possible, but once the available DRAM is completely consumed,
RabbitMQ will start storing messages on disk without having a
copy available in DRAM, which will severely impact performance.

Ka�a, on the other hand, was speci�cally designed with the
various consumption rates requirement in mind and hence is much
be�er positioned to handle a wider scale of time decoupling.

4.2 Routing Logic
RabbitMQ inherits the routing logic of AMQP and hence can be
very sophisticated. Stock RabbitMQ already provides for a number
of di�erent exchange types, most notably: (i) a very �exible topic-
based exchange (of type topic) that supports multipart “a.b.c” topic-
based routing with wildcard support (“*” for one part and “#” for an
arbitrary number of parts), (ii) a content-based exchange (of type
header).

Since RabbitMQ provides an API to create additional exchanges,
routing logic can be anything you need. For example, the RabbitMQ
community has provided additional exchange de�nitions, most
importantly support for load balancing [3, 27].

Another relevant and useful feature in RabbitMQ is Alternate
Exchange which allows clients to handle messages that an exchange
was unable to route (i.e. either because there were no bound queues
our no matching bindings).

With Ka�a, the choice is more limited: it supports a basic form of
topic-based routing. More speci�cally, the producer controls which
partition it publishes messages to. �is can be done at random
(i.e. load balancing) or by some partitioning function by allowing
the user to specify a partition-by key and using this to hash to a
partition. �e partition function can be overridden by the user.

4.3 Delivery Guarantees
RabbitMQ and Ka�a di�er in their notion of at least once seman-
tics. Since individual packets from a batch can fail, recovery from
failures can have impact on the order of packets. Depending on the
application, order might be important, so it makes sense to split
this up in

(1) at least once without order conservation: Ka�a cannot
preserve order when sending to multiple partitions.

(2) at least once with order conservation: RabbitMQ sorts
messages when writing them to queue structures, meaning
that lost messages can be correctly delivered in order with-
out the need to resend the full batch that lost 1 or more
messages. Ka�a will preserve order under conditions spec-
i�ed in Section 4.4.

It should be noted that using standard AMQP 0.9.1, the only
way to guarantee that a message is not lost is by using transac-
tions which are unnecessarily heavyweight and drastically decrease
throughput. To remedy this, in RabbitMQ a con�rmation mech-
anism was introduced which mimics the consumer acknowledg-
ments mechanism already present in the protocol.

Guaranteeing that a packet gets delivered involves the concept
of “ownership transfer” between the di�erent components of the
architecture. A guarantee is not absolute: we introduce the notion
of failure probability over time and the failure rate λ of individual

components and of the complete packet transfer chain. Failure
probability and rate can be reduced by providing replication.

Figure 3: reliable transfer

In the following, producer and consumer failures are out of scope
(we assume λ = 0).

�e scenarios for RabbitMQ and Ka�a mainly digress in the
generation of publisher con�rms, the consumer interaction and
message deletion aspects.
• t1, the producer owns a message to be forwarded and delivers it
to RabbitMQ/Ka�a.
• t2, RabbitMQ “handles” the message; the actual logic of this
handling is case-speci�c: (i) for unroutable messages, the broker
will issue a con�rm once the exchange veri�es a message would
not route to any queue, (ii) for routable messages, the con�rmation
is issued once the message has been accepted by all the queues,
(iii) for persistent messages routed to durable queues, this means
persisting to disk, and (iv) for mirrored queues, this means that all
mirrors have accepted the message ; Ka�a appends the message to
the relevant partition of the append log on the master broker node
A and potentially on a redundant broker node B
• t3, a coordinated ACK from node A (and if applicable, B) is sent
to the producer - ownership now moved to RabbitMQ/Ka�a and
the producer can delete the message
• t4, the consumer gets the message from RabbitMQ/Ka�a
• t5 [RabbitMQ speci�c] the consumer sends an ACK to node A (and
if applicable, B) - ownership now moved to the consumer and the
broker can delete the message. Note that typically every consumer
will read from a dedicated queue, so the broker will keep ownership
of messages that need to go to multiple consumers if all ACKS are
not yet received.
• t5 [Ka�a speci�c] Ka�a is not keeping state, so has no way of
understanding ownership moved to the consumer. It will keep hold
of the message until a con�gured timeout expires (typically several
days).

RabbitMQ improves on AMQP and o�ers the possibility to pub-
lish batches of messages with individual ACK/NACK replies indi-
cating that the message safely made it to disk (i.e. fsynced).

�e acknowledgment behavior of Ka�a (request.required.acks)
can be chosen as 0 for best e�ort, 1 to signal the producer when
the leader has received the packet but did not commit it to disk
(meaningful while running under replication since otherwise packet
could get lost), or −1 to signal the producer when a quorum has
received the packet but did not commit it to disk (should not be a
problem unless all replicas run in the same environment, which
implies they could all go down at once caused by e.g. a power
failure).

While running without replication, Ka�a in its default con�gu-
ration does not wait with sending ACKs until an fsync has occurred
and therefore messages might be lost in the event of failure. �is

231

DEBS ’17, June 19-23, 2017, Barcelona, Spain Philippe Dobbelaere and Kyumars Sheykh Esmaili

can be changed by con�guration, at the expense of a reduction in
throughput.

4.4 Ordering Guarantees
RabbitMQ will conserve order for �ows1 using a single AMQP
channel. It also reorders retransmi�ed packets inside its queue
logic so that a consumer does not need to resequence bu�ers. �is
implies that if a load-balancer would be used in front of RabbitMQ
(e.g. to reach the scalability of what can be accomplished inside
Ka�a with partitions), packets that leave the load-balancer on
di�erent channels will have no ordering relation anymore.

Ka�a will conserve order only inside a partition. Furthermore,
within a partition, Ka�a guarantees that a batch of messages either
all pass or all fail together. However, to conserve inter-batch order,
the producer needs to guarantee that at most 1 produce request is
outstanding, which will impact maximum performance.

4.5 Availability
Both RabbitMQ and Ka�a provide availability via replication.

RabbitMQ Clusters can be con�gured to replicate all the ex-
change and binding information. However, it will not automatically
create mirrored queues (RabbitMQ’s terminology for replicated
queues) and will require explicit se�ing during queue creation.

For Ka�a, availability requires running the system with a suit-
ably high replication factor.

As stated by the CAP theorem [16], in any architecture based
on replication, split-brain problems can arise due to fault induced
network partitions. For an in-depth description of the availability
models (as well as CAP theorem analysis) of Ka�a and RabbitMQ
see the corresponding episodes in the Jepsen series [19, 20].

4.6 Transactions
AMQP transactions only apply to publishes and acks. RabbitMQ
has additionally made rejection transactional. On the consuming
side, the acknowledgments are transactional, not the consuming
of the messages themselves. AMQP guarantees atomicity only
when transactions involve a single queue. RabbitMQ provides no
atomicity guarantees even in case of transactions involving just a
single queue, e.g. a fault during commit can result in a sub-set of
the transaction’s publishes appearing in the queue a�er a broker
restart. Note that these are not transactions in the strict ACID sense,
since some interaction with the publisher or consumer is required.
Take e.g. a producer publishing a batch. If any of the messages
fails, the producer gets the chance to republish these messages, and
RabbitMQ will insert them in the queue in order. A�er which the
publisher is noti�ed that the failing messages did make it and can
consider the transaction complete.

Ka�a currently does not support transactions. However, a pro-
posal to extend it with this feature in the future releases has recently
been adopted.

4.7 Multicast
Applications o�en need to send the same information to multiple
destinations.

1a sequence ofmessages that is to be processedwithout insertion, deletion or reordering

RabbitMQ supports multicast by providing a dedicated queue
per individual consumer. As a result, the only impact on the system
is that there is an increased number of bindings to support these
individual queues. RabbitMQ has a view of which consumers have
already taken ownership of each message, so can easily decide
when it can �ush the message from its system. In fan-out cases,
RabbitMQ keeps per-queue indexes and metadata but only one copy
of the message bodies for all queues.

In Ka�a, only one copy of messages within a topic is maintained
in the brokers (in non-replicated se�ings); however, the multicast
logic is handled completely at the consumer side. Each consumer
can fetch messages out of Ka�a based on the message index. Ka�a
does not know when all consumers have taken ownership of the
message, so it simply keeps the message for a con�gurable amount
of time or size.

4.8 Dynamic Scaling
For RabbitMQ, adding additional nodes to running clusters or re-
moving a node from a cluster is well supported. �ese additional
nodes will be able to become master for newly created queues, and
will accept channels allowing to publish to any exchange or con-
sume from any queue, but cannot be used to re-distribute master
queue assignments of existing queues without manual intervention.
Adding nodes in a RabbitMQ cluster is transparent for consumers
- these still preferably consume from the master queue, although
consuming from any other cluster node works, at the expense of
additional internal networking load since the packets reside on the
master queue.

In Ka�a, upon adding new nodes to the cluster, the user can
decide to move existing partitions to the new node. In that case,
a new replica is created on the new node and once it has caught
up, the old replica of the partition can be deleted. �is can be done
online while the consumers are consuming. Adding nodes to a
Ka�a cluster is not transparent for consumers, since there needs to
be a mapping from partitions to consumers in a consumer group.
Removing a node can be done by �rst redistributing the partitions
on that node to the remaining nodes.

5 COMMON FEATURES: QUANTITATIVE
COMPARISON

In this section we use empirical methods to quantitatively compare
the e�ciency/performance of RabbitMQ and Ka�a. �roughout
this section, we base our arguments predominantly on our own
experimental results. However, in a few cases where the required
infrastructure/scenario is not easily replicable, we refer to existing
results reported by others.

As explained earlier in Section 2.2.5, e�ciency is primarily mea-
sured in terms of latency and throughput. Hence, we organize the
content of this section accordingly: latency results are discussed in
Section 5.1 and throughput results in Section 5.2.

In addition to the system and e�ciency measures aspects, we
include two other important dimensions in our experiments: (i)
delivery guarantees, i.e. at most once vs at least once, (ii) availability,
i.e., replicated queues vs non-replicated queues. As discussed in
Section 2, these have important implications for e�ciency.

232

Industry Paper: Kafka versus RabbitMQ DEBS ’17, June 19-23, 2017, Barcelona, Spain

Experimental setup. Our experiments where conducted on
a Linux server with 24 cores (Intel Xeon X5660 @ 2.80GHz) and
12GB of DRAM running a 3.11 kernel. �e hard disk used was a
WD1003FBYX-01Y7B0 running at 7200 rpm. Note that while use
of multiple machines can make it easier to increase bandwidth to
disk, but it introduces network layer e�ects that make it harder to
de�ne the system under test.

Both for Ka�a and RabbitMQ, we used the test tools provided
by the respective distributions 2. �e versions of RabbitMQ and
Ka�a used in the experiments were 3.5.3 and 0.10.0.1, respectively.
It should be noted that all our Ka�a experiments have been carried
out using the default con�guration. As nicely laid out in this recent
white paper [10], these default se�ings favor latency over through-
put (most notably in the con�guration parameter linger.ms which
is by default set to 0, meaning the producer will send as soon as it
has data to send).

All tests ran for 60 seconds a�er test setup, with results collection
starting a�er 30 seconds. All packet generators were con�gured to
produce maximal load. �e source code of the test tools provides
succinct embedded documentation of all the tunable parameters.

Whenever multiple instances of a broker were required, these
were started on the same machine, e�ectively eliminating the ma-
jority of network latency e�ects.

In addition to the latency and throughput results reported below,
we also monitored both the core utilization (never fully utilized,
explicitly reported in some �gures) and the memory consumption
(never exceeded 13.4 % for RabbitMQ or 29.5% for Ka�a).

Finally, since the median error across di�erent runs were overall
low (less than 10%), they are not depicted in the graphs.

5.1 Latency Results
We �rst start with the at most once mode, as it always delivers the
best latency results. We then show the at least once mode results,
demonstrating the cost of providing a stronger delivery guarantee.

5.1.1 Latency in At Most Once Mode. For RabbitMQ, the serial
pipeline handling a packet mainly consists of an Erlang process
terminating the protocol between the producer and the broker, a
second Erlang process keeping the queue state and a third Erlang
process transferring the packet from the queue to the consumer.
RabbitMQ latency results are optimal if the broker is allowed to have
a window of outstanding uncon�rmed publishes3 (we measured
with a window of 10).

For Ka�a, the serial pipeline handling a packet is dominated
by the storage access latency. As described in Section 3.1, Ka�a
directly uses the OS cache associated to the disk and, ideally, when
reads occur instantly a�er the write, chances are high that the
packet will still be available in that cache.

Our measurements of RabbitMQ and Ka�a latency measure-
ments are summarized in Table 1. Since the test tools of Ka�a and
RabbitMQ report di�erent statistical summaries, in this table we
have selected a subset of those that are important and semanti-
cally comparable. Our results are largely consistent with those of a
similar set of experiments reported in [29].

2 For RabbitMQ, it’s part of the Java client, and for Ka�a, it’s part of the Ka�a tools.
3h�ps://www.rabbitmq.com/con�rms.html

mean max
with and without replication 1–4 ms 2–17 ms

(a) RabbitMQ

50 percentile 99.9 percentile
without replication 1 ms 15 ms
with replication 1 ms 30 ms

(b) Kafka

Table 1: Latency Results when reading from DRAM

Here are two important conclusions that can be drawn from
these results: (i) Both of these systems can deliver millisecond-
level low-latency guarantees. �e results for Ka�a seem a li�le
be�er, however, as we discuss below, Ka�a is operating in an ideal
se�ing (zero cache miss) and in a more realistic se�ing RabbitMQ
outperforms it. (ii) Replication does not drastically hamper the
results. More speci�cally, in case of RabbitMQ the results are almost
identical. For Ka�a, it only appears a�er the median value, with a
100% increase in the 99.9 percentile.

�e results reported in Table 1 are for normal (in case of Ka�a,
ideal) operating conditions. Below, we discuss the implications of
operating beyond the normal/ideal conditions.

When RabbitMQ is running close to maximum load (an excep-
tional se�ing), the broker will start to write packets to disk to
free up memory it needs for computation, e�ectively meaning the
latency �gures will rapidly deteriorate.

In case of Ka�a, when consumers are slower then producers
(which can be a common case), packets will have to be transferred
from disk to cache before a read completes. Even with an architec-
ture that pro�ts from sequential disk access, the latency values will
rapidly increase, not only for the slow consumer where the e�ect is
not important but also for fast consumers that will see their cache
trashed. �is is demonstrated in the experiment reported in [8]
where it shows the e�ect of cache miss reads when approximately
30% of the packets have to be fetched from disk, resulting in a
latency increase of more than an order of magnitude.

Another factor that can severely impact Ka�a latencies is the fact
that Ka�a runs on the JVM and large messages can cause longer
garbage collection pauses as Ka�a allocates large chunks. �is
will show up as outliers in the latency distribution. �is can also
negatively a�ect the control plane, up to the point where longer
timeout values for Zookeeper (zookeeper.session.timeout.ms) need
to be con�gured so that Ka�a does not abandon the ZooKeeper
session.

5.1.2 Latency in At Least Once Mode. RabbitMQ latency is not
really impacted by switching to a higher level of reliability: the
packet will be wri�en out to disk but since it is also available in
memory this does not impact how fast it can be consumed.

For Ka�a, the latency increases in case of replication since Ka�a
only delivers messages to consumers when they are acknowledged
by a quorum of the active replicas (this is needed since Ka�a does
not enforce an fsync per packet on any of the replicas, so a Ka�a
packet is only protected by the fact it is kept by multiple machines).

Summary. In case of RabbitMQ, up to medium level of load, the
latency for both at most once and at least once modes is below 10
ms.

233

DEBS ’17, June 19-23, 2017, Barcelona, Spain Philippe Dobbelaere and Kyumars Sheykh Esmaili

0

10

20

30

40

50

60

0 500 1000 1500 2000
0

10000

20000

30000

40000

50000

M
Bp

s

pp
s

recordsize

producers=1, consumers=1, ack=1, direct exchange

con�rm=-1, no replication, pps
con�rm=10, no replication, pps

con�rm=-1, replicated queue, pps
con�rm=-1, no replication, Mbps

(a) RabbitMQ

0

10

20

30

40

50

60

0 500 1000 1500 2000
0

10000

20000

30000

40000

50000

M
Bp

s

pp
s

recordsize

topics=5, batchsize=100, partitions=2

bytes in Mbps
packets in pps

(b) Kafka

Figure 4: �roughput as function of record size

In case of Ka�a, on the other hand, if it can read from OS cache,
its latency for at most once mode is below 10 ms, and about twice
as large for the at least once mode. However, when it needs to read
from disk, its latency can grow by up to an order of magnitude to
around 100 ms.

5.2 �roughput Results
RabbitMQ parallelization inside the node boils down to multithread-
ingwith Erlang actors, and parallelization across nodes can be either
tra�c partitioning across standalone nodes or tra�c distribution
inside clusters. Ka�a parallelization inside the node is also due
to multithreading (in�uenced by producer and consumer count).
Ka�a parallelization across nodes is due to partitions, see Section
3.1. �e performance tests that we have run only consider a single
node, so they need to be adjusted with a suitable factor expressing
the external parallelization.

5.2.1 Throughput in At Most Once Mode. �roughput for Rab-
bitMQ is optimal if the broker is con�gured to allow an unlimited
number of uncon�rmed publishes (conf irm == −1).

Figure 4a shows the impact of record size (in bytes) on through-
put for a single RabbitMQ node. In these �gures, pps stands for
packets per second. As is to be expected, throughput decreases for
larger packets (in addition to the packet switching e�ort which
does not depend on the size, the byte copying operation scales
linearly with the record size). Performance is optimal in the case of
unlimited outstanding con�rmed publishes. Replication lowers the
throughput.

As reported in [23], using a clustering setup on Google Compute
Engine consisting of 32 node, using 186 queues, 13000 consumers
and producers and a load balancer in front, RabbitMQ was able to
sustainably handle over 1.3M pps.

While measuring throughput of Ka�a, the three important fac-
tors are: record size, partition count, and topic count. We have
conducted di�erent experiments to investigate the impact of each
of these factors. Our �ndings are described below.

Figure 4b shows how the record size in�uences the throughput
(in MBps or pps) of Ka�a. �e throughput in packets curve has a
similar shape as what we found for RabbitMQ. When we plot the
throughput in bytes per unit of time, we observe an almost linear

relation to the record size: copying packets in Ka�a is the dominant
operation.

Figure 5 shows how the throughput of Ka�a is impacted by
the number of topics. It is important to point out that all these
topics are active topics, each served by an individual producer.
Based on this graph, it is a linear relation, however, the linearity
in topics/producers has a hard limit of about 8 producers in our
experimental setup. Machine utilization at that peak was Ka�a
3.25 cores, all producers 10 cores, all consumers 4 cores and about
6 cores idle. With a higher topic count, performance diminishes.

0

5000

10000

15000

20000

25000

30000

0 2 4 6 8 10 12 14

pp
s

topic count

batchsize=100, recordsize=100, partitions=1

2 replicas, acks=-1
1 replica, acks=0
1 replica, acks=1

Figure 5: Kafka throughput as function of topic count

Ka�a up to about v0.8.2 was not designed to handle a large
number of topics (with a hard limit around 10000 due to Zookeeper
limits) as is evident from test results in [13]. �ese tests di�er
from ours in 2 ways: they use a partition count that maximizes
throughput and not every topic was loaded by test generators. �e
results show a rapid deterioration in throughput for topic counts
between 100 and 1000. Note that both in our experiments and the
experiments from [13], se�ing up a lot of topics or a lot of partitions
(a few hundred) led to frequent crashes of the control plane logic.

Figure 6 shows the throughput of Ka�a as a function of partition
counts. Its slope tapers o� at about 10 (not due to core utilization,
presumably by disk cache / driver logic resource contention) and the
curve peaks at 200 in our experimental setup. �is peak will occur
elsewhere on systems with di�erent core / DRAM / performance

234

Industry Paper: Kafka versus RabbitMQ DEBS ’17, June 19-23, 2017, Barcelona, Spain

specs, so evidently, determining the partition count will be one of
the most important con�guration jobs of a Ka�a installation.

0

0.5

1

1.5

2

2.5

3

1 10 100 1000 10000
0

10000

20000

30000

40000

50000

fra
cti

on

pp
s

partition count

topics=1, batchsize=100, recordsize=100, replication=1

core utilisation
pps

Figure 6: Kafka throughput as function of partition count

In [33],Wyngaard reports on an experiment at NASA JPL for very
high record sizes (10MB). A maximum of 6.49Gbps for throughput
measured in bytes was found on a con�guration with 3 producers,
3 consumers, single Ka�a instance. More producers or more Ka�a
instances reduced this performance.

�e observation that increasing the number of partitions beyond
a certain point does not help to increase total throughput anymore
could be due to the fact that the batchsize de�ned at the producer
is split over the number of partitions.

5.2.2 Throughput in At Least Once Mode. For RabbitMQ, at least
oncemode implies writing packets to disk. �e readwill still happen
frommemory, as long as the packet in memory has not been trashed.

Using producer batches is supported by AMQP, and RabbitMQ
allows individual ACK/NACK responses per message in the batch.
Together with the insertion sort on the queues, this ensures a pro-
ducer can pipeline several batches without the need to wait for
ACKS and still be sure about message order in the queues.

Switching on mirrored queues will have a negative impact on
this throughput since the ACK now needs to be guaranteed from
all the replicated queues.

Referring to Figure 4a above, for at least once delivery scenarios,
RabbitMQ’s throughput drops by 50% compared to the best e�ort
scenario.

�e case of Ka�a is more complicated to analyze. Ka�a assumes
packets are wri�en in batches, andwill alwayswrite them to disk. In
its at most once mode, Ka�a can de�ne a window (either in terms of
number of packets or in terms of time, ”log.�ush.interval.messages”
and ”log.�ush.interval.ms”) of outstanding messages that have not
yet been fsynced to disk media. �is implies that on a system crash
these messages will be lost.

�e only way to get truly reliable message delivery with Ka�a is
running it in a mode where acknowledges are sent only if a batch
has been wri�en to the disk medium, or has been received by a
quorum of replicas. �is e�ectively slows down the producer to
wait for a con�rmation of a batch before the next batch can be
wri�en, introducing a round trip delay which is not required in
RabbitMQ due to its selective ACK/NACK mechanism and reorder-
ing logic. If Ka�a is running with redundant nodes, the client has

to wait for a quorum ACK which will even take longer (2 round
trips instead of 1). Our experiments show a decrease in perfor-
mance due to replication of about 3 to 4 for topics = 5,batchsize =
100,partitions = 5, replication = 2. A similar experiment, reported
in [22], generated slightly be�er results. Lastly, results from [21]
indicate that the impact of replication factor is visible only when
acknowledgments from all replicas are taken into account. For a 2
replica system, performance drops to half for larger batches, to a
third for single messages.

We conclude that Ka�a’s throughput in at least once mode de-
creases by 50% to 75% compared to the best e�ort scenario.

Analysis and Summary. �ere are various factors contributing to
the overall throughput of RabbitMQ and Ka�a. In order to simplify
the analysis and summarize the results reported in this section, we
use a curve-��ing approach: for each system we propose a simple
�rst order function to model its throughput characteristics based on
its inputs as well as important architecture/implementation details.
Furthermore, in each case we apply a minimum error procedure
between the proposed function and our empirical data.

�e resulting functions and ��ed values for RabbitMQ and Ka�a
are depicted in Table 2 and Table 3, respectively. Note that in this
tables, U stands for “(processor cycle) utilization” and e�ective size
(in case of Ka�a) is the maximum of the batch size and the record
size used by the producers.

�e proposed function to model the throughput behavior of
RabbitMQ is shown in Table 2. Due to the Actor Model of Erlang,
the total throughput per RabbitMQ node scales linearly with the
number of producers, hence the producer factor in the formula. �e
producers factor, however, is only linear up to a value governed by
how Erlang distributes its lightweight processes over cores, in our
measurements the pps already saturated at the value corresponding
to producers == 2 for a single node and single queue.

Part (b) of Table 2 shows the ��ed values of the proposed func-
tion for the graph in Figure 4a. �e mean error is signi�cantly
low. Another �t on the measurements published in [24] gives very
similar results.

�ere are a few important remarks here: (i) there is a small
in�uence on the outstanding published packets parameter. If we
change this from 10 to 100, for 100 bytes packets the throughput
increases to 20Kpps, (ii) all these results are for a direct exchange.
A topic exchange has more complex routing logic (for 100 byte
packets, the throughput lowers to 19Kpps).

In summary, we can conclude that RabbitMQ is mainly con-
strained by routing complexity (up till frame sizes of a few 1000
bytes, at which time packet copying becomes non-negligible), which
is the reason why we prefer to express RabbitMQ performance in
packets per unit of time.

�e proposed function to model the throughput behavior of
Ka�a is shown in Table 3. �e “topics” parameter counts the num-
ber of con�gured topics on the Ka�a broker. It is worth noting that
for Ka�a, we get the best �t if we put a 0.5 exponent, which might
be related to the power law of cache misses.

For producers = 5, size = 4000,partitions = 10 our estimation
predicts 85 Kpps. On a slightly more powerful processor architec-
ture (faster memory, twice the cache size), [15] reports 140 Kpps
for a similar test con�guration.

235

DEBS ’17, June 19-23, 2017, Barcelona, Spain Philippe Dobbelaere and Kyumars Sheykh Esmaili

|producers |
Uroutinд+size∗Ubyte

(a)
Uroutinд Ubyte Mean Error

no replication 3.24e − 5 7.64e − 9 3%
replicated queue 6.52e − 5 8.13e − 9 4.5%

(b)
Table 2: Modeling the throughput of RabbitMQ: (a) suggested
function (b) �tted values

|producers |∗ |par tit ions |
Uroutinд+ |topics |∗Utopics+ef f ect ive size0.5∗Ubyte

(a)
Uroutinд Utopics Ubyte Mean Error

acks = 0, rep. = 0 3.8e − 4 2.1e − 7 4.9e − 6 30%
acks = 1, rep. = 0 3.9e − 4 9.1e − 8 1.1e − 6 30%
acks = -1, rep. = 2 9.4e − 4 7.3e − 5 2.9e − 5 45%

(b)
Table 3: Modeling the throughput of Kafka: (a) suggested func-
tion (b) �tted values

From these parameters, it becomes evident that it is more appro-
priate to express Ka�a throughput in bytes, sinceUbyte is dominant
even for small frames.

Finally, the error rate level in case of Ka�a is not as low as that of
RabbitMQ. Two potential causes for these variations are: (i) Ka�a
relies on OS level caching of disk access, which is a complex hidden
subsystem that cannot be accurately modeled or even controlled
and is shared across everything that runs on the machine (ii) Ka�a
runs on the JVM, which has much more variability [25] than an
Erlang VM due to unsophisticated locking mechanisms and the
garbage collection process.

6 DISTINCT FEATURES
In the previous sections, we looked at the common features that
Ka�a and RabbitMQ share. However, these two systems also come
with their own distinct features. Knowledge of such features might
be an important factor while making the decision to choose one of
the two. Hence, below, we give a short summary of such features.

6.1 Features Unique to Kafka
Long Term Message Storage. Ka�a stores its messages on disk.
Purging of messages is done automatically and con�gured per topic.
Messages are purged either a�er a retention time orwhen the topic’s
disk quota has been exceeded.
Message Replay. Since Ka�a keeps no state about consumers and
messages can be stored long term, consumers can easily replay
messages when needed. �is can be a very useful feature for the
fault tolerance of the downstream systems.
Kafka Connect. Ka�a Connect is a framework for scalable and
reliable streaming of data between Apache Ka�a and other systems.
It makes it simple to quickly de�ne connectors that move large
collections of data into and out of Ka�a.
Log Compaction Ka�a’s log compaction feature ensures that it
will always retain at least the last known value for each message
key within the log of data for a single topic partition. �is can be
particularly useful in the use cases that are based on change feeds
(de�ned in Section 7).

�e Ka�a ecosystem o�ers libraries and tools that provide addi-
tional functionality on top of Ka�a as pub/sub system. A notable ex-
ample isKafka Streamswhich is brie�y explained in Section 7.1.5.
A detailed description of these capabilities is beyond the scope of
this paper.

6.2 Features Unique to RabbitMQ
Standardized Protocol. RabbitMQ is, in essence, an open-source
implementation of AMQP, a standard protocol with a highly-scrutinized
design. As such, it enjoys a higher level of interoperability and can
easily work with (and even be replaced by) other AMQP-compliant
implementations.
Multi-protocol. In addition to AMQP, RabbitMQ supports a few
other industry standard protocols for publishing and consuming
messages, most notably MQTT (a very popular choice in the IoT
community) and STOMP. Hence, in se�ings with mixed use of
protocols, RabbitMQ can be a valuable asset.
Distributed Topology Modes. RabbitMQ, in addition to cluster-
ing, also supports federated exchanges which is a good match for
Wide-area deployment with less-reliable network connections4.
Compared to Clustering, it has a lower degree of coupling. A very
useful feature of the federated exchanges is their on-demand for-
warding. Furthermore, through its Shovel mechanism, RabbitMQ
provides another convenient and easy way to chain brokers/clusters
together.
ComprehensiveManagement andMonitoringToolsRabbitMQ
ships with an easy-to-use management UI that allows user to mon-
itor and control every aspect of the message broker, including: (i)
connections, (ii) queues, (iii) exchanges, (iv) clustering, federation
and shoveling, (v) packet tracing, (vi) resource consumption. To-
gether, these o�er excellent visibility on internal metrics and allow
for easy test and debug cycles.
Multi-tenancy and Isolation. RabbitMQ implements the nota-
tion of Virtual Hosts which is de�ned by AMQP to make it possible
for a single broker to host multiple isolated environments (i.e. log-
ical groups of entities such as connections, exchanges, queues,
bindings, user permissions, policies, etc).
Consumer Tracking. At queue level, it keeps state, and knows
exactly what consumers have consumed what messages at any
time.
Disk-less Use. RabbitMQ does not require disk space to route
packets, if persistence is not a requirement. �is makes it a good
choice for embedded applications and restricted environments. In
fact, RabbitMQ has been successfully deployed on Raspberry Pi [6].
Publisher Flow Control. RabbitMQ can stop publishers from
overwhelming the broker in extreme situations. �is can be used in
a �ow control scenario when deletion of messages is not acceptable.
�eue Size Limits. A queue can be limited in size. �is mecha-
nism can help in a �ow control scenario when deletion of messages
is acceptable.
Message TTL. A message can be given a “Time To Live”. If it
stays beyond that time in any queue, it will not be delivered to the
consumer. �is makes a lot of sense for realtime data that becomes

4Recent versions of Ka�a have a notion of federation, but more in the sense of cross-
datacenter replication.

236

Industry Paper: Kafka versus RabbitMQ DEBS ’17, June 19-23, 2017, Barcelona, Spain

irrelevant a�er a speci�c time. �e TTL can be a�ached to a queue
at creation time, or to individual messages at the time of publishing.

7 PREFERRED USE CASES
7.1 Best Suited for Kafka

7.1.1 Pub/Sub Messaging. Ka�a can be a good match for the
pub/sub use cases that exhibit the following properties: (i) if the
routing logic is simple, so that a Ka�a “topic” concept can handle the
requirements, (ii) if throughput per topic is beyond what RabbitMQ
can handle (e.g. event �rehose).

7.1.2 Scalable Ingestion System. Many of the leading Big Data
processing platforms enable high throughput processing of data
once it has been loaded into the system. However, in many cases,
loading of the data into such platforms is the main bo�leneck. Ka�a
o�ers a scalable solution for such scenarios and it has already been
integrated into many of such platforms including Apache Spark
and Apache Flink, to name a few.

7.1.3 Data-Layer Infrastructure. Due to its durability and e�-
cient multicast, Ka�a can serve as an underlying data infrastructure
that connects various batch and streaming services and applications
within an enterprise.

7.1.4 Capturing Change Feeds. Change feeds are sequences of
update events that capture all the changes applied on an initial
state (e.g. a table in database, or a particular row within that table).
Traditionally, change feeds have been used internally by DBMSs to
synchronize replicas. More recently, however, some of the modern
data stores have exposed their change feeds externally, so they can
be used to synchronize state in distributed environments. Ka�a’s
log-centric design, makes it an excellent backend for an application
built in this style.

7.1.5 Stream Processing. Starting in Ka�a version 0.10.0.0, a
light-weight stream processing library called Ka�a Streams is avail-
able in Apache Ka�a to perform stateful and fault-tolerant data
processing. Furthermore, Apache Samza, an open-source stream
processing platform is based on Ka�a.

7.2 Best Suited for RabbitMQ
7.2.1 Pub/Sub Messaging. Since this is exactly why RabbitMQ

was created, it will satisfy most of the requirements. �is is even
more so in an edge/core message routing scenario where brokers
are running in a particular interconnect topology.

7.2.2 Request-Response Messaging. RabbitMQ o�ers a lot of
support for RPC style communication by means of the correlation
ID and direct reply-to feature, which allows RPC clients to receive
replies directly from their RPC server, without going through a
dedicated reply queue that needs to be set up.

Hence, RabbitMQ, having speci�c support to facilitate this use-
case and stronger ordering guarantees, would be the preferred
choice.

7.2.3 Operational Metrics Tracking. RabbitMQ would be a good
choice for realtime processing, based on the complex �ltering the
broker could provide.

Although Ka�a would be a good choice as an interface to apply
o�ine analytics, given that it can store messages for a long time and
allows replay of messages. �roughput per topic could be another
criterion to decide.

7.2.4 Underlying Layer for IoT Applications Platform. RabbitMQ
can be used to connect individual operator nodes in a data�ow
graph, regardless of where the operators are instantiated. A lot of
the features of RabbitMQ directly cover platform requirements: (i)
sub 5ms latency for the majority of the packets, throughput up to
40Kpps for single nodes, (ii) excellent visibility on internal metrics
and easy test and debug cycles for data�ow setup through the web
management interface, (iii) support for the MQTT protocol, (iv) so-
phisticated routing capability allows to expose packet �lters as part
of an associated data processing language, and (v) the possibility to
handle a very large number of streams that all have rather small
throughput requirements, with a large number of applications all
interested in di�erent small subsets of these streams.

7.2.5 Information-centric Networking. �is is essentially a game
on the capabilities of the architecture to intelligently route packets.
�erefore, RabbitMQ would be the preferred choice, maybe even
with a speci�c exchange that understands the link between routing
key and destination. �e geographic routing described in [12] is an
example.

7.3 Combined Use
�ere are a number of requirements that cannot be covered solely
by either RabbitMQ or Ka�a, and where a combination of both is
the best option.

Two common options for chaining these two systems are the
following:
• Option 1: RabbitMQ, followed by Ka�a. �is is a good choice if

RabbitMQ would be the best architectural choice, but some streams
need long term storage. By pu�ing RabbitMQ �rst, stronger latency
guarantees can be o�ered. It also allows �ne-grained selection of
what streams need to go to long term storage, preserving disk
resources.
• Option 2: Ka�a, followed by RabbitMQ.�is is a good choice if

the throughput for the whole system is very high, but the through-
put per topic is within the bounds of what a single node RabbitMQ
broker can handle. By pu�ing a RabbitMQ node behind a Ka�a
topic stream, all the complex routing capabilities of RabbitMQ can
be combined with the complementary features of Ka�a.

�e AMQP-Ka�a Bridge [26] can facilitate the interactions be-
tween RabbitMQ and Ka�a.

Alternatively, RabbitMQ and Ka�a can just be put in parallel,
both processing the same input streams. �is is more likely to
happen in a scenario where two existing architectures are merged,
and one was using Ka�a while the other was using RabbitMQ.

Determination Table. So far we have considered speci�c use
cases whose requirements are best satis�ed by Ka�a, RabbitMQ or
a combination of both. In order to make these recommendations
applicable to other use cases, we propose a determination table
(depicted in Table 4). Each row in the table shows a set of features,
and the architectural choice that corresponds to this set. �is table
obviously oversimpli�es the decision to take - architects are advised
to consider all dimensions of the problem as discussed in Sections
4, 5 and 6 before coming to a conclusion.

237

DEBS ’17, June 19-23, 2017, Barcelona, Spain Philippe Dobbelaere and Kyumars Sheykh Esmaili
pr
ed
ic
ta
bl
e
la
te
nc
y?

co
m
pl
ex

ro
ut
in
g?

lo
ng

te
rm

st
or
ag
e?

ve
ry

la
rg
e
th
ro
ug

hp
ut

pe
rt
op

ic
?

pa
ck
et

or
de
ri
m
po

rta
nt
?

dy
na
m
ic
el
as
tic

ity
be
ha
vi
or
?

sy
st
em

th
ro
ug

hp
ut
?

at
le
as
to

nc
e?

hi
gh

av
ai
la
bi
lit
y?

N N * * N N XL N N Ka�a with multiple partitions
N N * * N N XL Y Y Ka�a with replication and multiple partitions
N N * * Y N L N N single partition Ka�a
N N * * Y N L Y Y single partition Ka�a with replication
* * N N * * L * N RabbitMQ
* * N N * * L * Y RabbitMQ with queue replication
* * Y N * * L * * RabbitMQ with Ka�a long term storage
N Y * * N N XL N * Ka�a with selected RabbitMQ routing

1 Y - feature required, N - feature not required, * - wildcard, replaces two rows that are identical
but in this feature, one with Y and one with N
2 L(arge), (e)X(tra)L(arge), see 5.2 for some more quantitative throughput �gures

Table 4: RabbitMQ and/or Kafka?

8 CONCLUSION
In this paper, we established a comparison framework to help posi-
tion Apache Ka�a and RabbitMQ w.r.t. each other, both quantita-
tively and qualitatively.

In terms of latency, both systems are capable of delivering low-
latency results (i.e., mean/median of around 10 ms). In case of
RabbitMQ, the di�erence between at most once and at least once
delivery modes is not signi�cant. For Ka�a, on the other hand,
latency increases about twice as large for the at least once mode.
Additionally, if it needs to read from disk, its latency can grow by
up to an order of magnitude.

In terms of throughput, in the most basic set up (i.e. on a single
node, single producer/channel, single partition, no replication) Rab-
bitMQ’s throughput outperforms Ka�a’s. Increasing the Ka�a par-
tition count on the same node, however, can signi�cantly improve
its performance, demonstrating its superb scalability. Increasing
the producer/channel count in RabbitMQ, on the other hand, could
only improve its performance moderately.

Both Ka�a and RabbitMQ can scale further by partitioning �ows
over multiple nodes. In RabbitMQ, this requires additional spe-
cial logic, such as Consistent Hash Exchange [3] and Sharding
Exchange [27]. In Ka�a this comes for free. Finally, replication has
a drastic impact on the performance of both RabbitMQ and Ka�a
and reduces their performance by 50% and 75%, respectively.

While e�ciency aspects are very important, architects are strongly
advised to consider all other dimensions of the problem as discussed
in Sections 4 (qualitative comparison of common features beyond
performance) and 6 (distinct features) before coming to a conclusion.
�e study reported in [25] which was conducted in the context of
a real-world application can serve as a good example.

Further, as described in section 7, such choice does not have to
be an exclusive one and a combination of both systems might be
the best option.

Future Work. We plan to extend this study in near future and
also solicit additional feedback. Any update in this regard will be
included in a “living” version of this report 5.

REFERENCES
[1] Apache Ka�a. URL h�ps://ka�a.apache.org/.
[2] RabbitMQ: Protocol Extensions. URL h�ps://www.rabbitmq.com/extensions.

html.
[3] Consistent Hash Exchange, . URL h�ps://github.com/rabbitmq/

rabbitmq-consistent-hash-exchange.
[4] RabbitMQ, . URL h�ps://www.rabbitmq.com/.
[5] Sizing your Rabbits, 2011. URL h�ps://www.rabbitmq.com/blog/2011/09/24/

sizing-your-rabbits/.
[6] T. Abarbanell. Benchmarking RabbitMQ on Raspberry Pi, 2015. URL h�p://blog.

abarbanell.de/raspberry/2015/05/17/benchmarking-rabbitmq-on-raspberry/.
[7] S. Abiteboul, I. Manolescu, P. Rigaux, M.-C. Rousset, and P. Senellart. Web Data

Management. Cambridge University Press, 2011.
[8] J. Alquiza. Load Testing Apache Ka�a on AWS, 2014. URL h�ps://grey-boundary.

io/load-testing-apache-ka�a-on-aws.
[9] P. Bellavista et al. �ality of Service in Wide Scale Publish-Subscribe Systems.

IEEE Communications Surveys & Tutorials, 16(3):1591–1616, 2014.
[10] Y. Byzek. Optimizing Your Apache Ka�a Deployment: Levers for �roughput,

Latency, Durability, and Availability. Technical report, Con�uent Inc, 2017. URL
h�ps://www.con�uent.io/blog/optimizing-apache-ka�a-deployment/.

[11] A. Corsaro et al. �ality of Service in Publish/Subscribe Middleware. Global
Data Management, 19(20):1–22, 2006.

[12] P. Dobbelaere. How to Design and Deploy a World Scalable Geofence Service
with Custom Exchanges in RabbitMQ, 2016. URL h�p://www.erlang-factory.
com/brussels2016/philippe-dobbelaere.

[13] I. Downard. Ka�a versus MapR Streams: Why MapR?, 2017. URL h�ps://www.
mapr.com/blog/ka�a-vs-mapr-streams-why-mapr.

[14] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. �e Many Faces
of Publish/Subscribe. ACM Computing Surveys (CSUR), 35(2):114–131, 2003.

[15] D. Gevorkyan. In Pursuit of Messaging Brokers, 2015. URL h�ps://www.
slideshare.net/slideshow/embed code/49881431inpursuitofmessaging.

[16] S. Gilbert and N. Lynch. Brewer’s Conjecture and the Feasibility of Consistent,
Available, Partition-tolerant Web Services. Acm Sigact News, 33(2):51–59, 2002.

[17] K. Goodhope et al. Building LinkedIn’s Real-time Activity Data Pipeline. IEEE
Data Eng. Bull., 35(2):33–45, 2012.

[18] P. Hunt et al. ZooKeeper: Wait-free Coordination for Internet-scale Systems. In
USENIX Annual Technical Conference, volume 8, page 9, 2010.

[19] K. Kingsbury. Jepsen: Ka�a, 2013. URL h�ps://aphyr.com/posts/
293-jepsen-ka�a.

[20] K. Kingsbury. Jepsen: RabbitMQ, 2014. URL h�ps://aphyr.com/posts/
315-jepsen-rabbitmq.

[21] J. Kreps. Ka�a Performance Testing, 2013. URL h�ps://cwiki.apache.org/
con�uence/display/KAFKA/Performance+testing.

[22] J. Kreps. Benchmarking Apache Ka�a: 2 Million Writes Per Second (On
�ree Cheap Machines), 2014. URL h�ps://engineering.linkedin.com/ka�a/
benchmarking-apache-ka�a-2-million-writes-second-three-cheap-machines.

[23] J. Kuch. RabbitMQ Hits One Million Messages Per Second on Google
Compute Engine, 2014. URL h�ps://blog.pivotal.io/pivotal/products/
rabbitmq-hits-one-million-messages-per-second-on-google-compute-engine.

[24] S. MacMullen. RabbitMQ Performance Measurements, part
2, 2012. URL h�ps://www.rabbitmq.com/blog/2012/04/25/
rabbitmq-performance-measurements-part-2/.

[25] N. Nannoni. Message-oriented Middleware for Scalable Data Analytics Architec-
tures. Master’s thesis, KTH Royal Institute of Technology, Sweden, 2015.

[26] P. Patierno. AMQP-Apache Ka�a Bridge, 2017. URL h�ps://github.com/
EnMasseProject/amqp-ka�a-bridge.

[27] rabbitmq sharding. Sharding Exchange. URL h�ps://github.com/rabbitmq/
rabbitmq-sharding.

[28] K. Sheykh Esmaili et al. Changing Flights in Mid-air: A Model for Safely Modi-
fying Continuous�eries. In Proceedings ACM SIGMOD, pages 613–624, 2011.

[29] T. Treat. BenchmarkingMessage�eue Latency, 2016. URL h�p://bravenewgeek.
com/benchmarking-message-queue-latency/.

[30] C. Trielo� et al. A General Purpose Middleware Standard. Network Programming,
SunOS, 4, 2006.

[31] S. Vinoski. Advanced Message�euing Protocol. IEEE Internet Computing, 10
(6), 2006.

[32] G. Wang et al. Building a Replicated Logging System with Apache Ka�a. Pro-
ceedings of the VLDB Endowment, 8(12):1654–1655, 2015.

[33] J. Wyngaard. High �roughput Ka�a for Science, 2015. URL h�ps://events.
linuxfoundation.org/sites/events/�les/slides/HTKa�a2.pdf.

5To be made available at: h�ps://arxiv.org/�nd/cs/1/au:+Esmaili K/0/1/0/all/0/1

238

View publication statsView publication stats

https://www.researchgate.net/publication/317420540

